Timezone: »
Poster
Unbiased estimates for linear regression via volume sampling
Michal Derezinski · Manfred K. Warmuth
Given a full rank matrix X with more columns than rows consider the task of estimating the pseudo inverse $X^+$ based on the pseudo inverse of a sampled subset of columns (of size at least the number of rows). We show that this is possible if the subset of columns is chosen proportional to the squared volume spanned by the rows of the chosen submatrix (ie, volume sampling). The resulting estimator is unbiased and surprisingly the covariance of the estimator also has a closed form: It equals a specific factor times $X^+X^{+\top}$. Pseudo inverse plays an important part in solving the linear least squares problem, where we try to predict a label for each column of $X$. We assume labels are expensive and we are only given the labels for the small subset of columns we sample from $X$. Using our methods we show that the weight vector of the solution for the sub problem is an unbiased estimator of the optimal solution for the whole problem based on all column labels. We believe that these new formulas establish a fundamental connection between linear least squares and volume sampling. We use our methods to obtain an algorithm for volume sampling that is faster than state-of-the-art and for obtaining bounds for the total loss of the estimated least-squares solution on all labeled columns.
Author Information
Michal Derezinski (UC Santa Cruz)
Manfred K. Warmuth (Univ. of Calif. at Santa Cruz)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Spotlight: Unbiased estimates for linear regression via volume sampling »
Tue. Dec 5th 11:35 -- 11:40 PM Room Hall A
More from the Same Authors
-
2021 Spotlight: Newton-LESS: Sparsification without Trade-offs for the Sketched Newton Update »
Michal Derezinski · Jonathan Lacotte · Mert Pilanci · Michael Mahoney -
2021 Poster: Newton-LESS: Sparsification without Trade-offs for the Sketched Newton Update »
Michal Derezinski · Jonathan Lacotte · Mert Pilanci · Michael Mahoney -
2020 Poster: Reparameterizing Mirror Descent as Gradient Descent »
Ehsan Amid · Manfred K. Warmuth -
2019 Workshop: Minding the Gap: Between Fairness and Ethics »
Igor Rubinov · Risi Kondor · Jack Poulson · Manfred K. Warmuth · Emanuel Moss · Alexa Hagerty -
2019 : Opening Remarks »
Jack Poulson · Manfred K. Warmuth -
2019 Poster: Robust Bi-Tempered Logistic Loss Based on Bregman Divergences »
Ehsan Amid · Manfred K. Warmuth · Rohan Anil · Tomer Koren -
2018 Poster: Leveraged volume sampling for linear regression »
Michal Derezinski · Manfred K. Warmuth · Daniel Hsu -
2018 Spotlight: Leveraged volume sampling for linear regression »
Michal Derezinski · Manfred K. Warmuth · Daniel Hsu -
2017 Poster: Online Dynamic Programming »
Holakou Rahmanian · Manfred K. Warmuth -
2014 Poster: The limits of squared Euclidean distance regularization »
Michal Derezinski · Manfred K. Warmuth -
2014 Spotlight: The limits of squared Euclidean distance regularization »
Michal Derezinski · Manfred K. Warmuth -
2013 Workshop: Large Scale Matrix Analysis and Inference »
Reza Zadeh · Gunnar Carlsson · Michael Mahoney · Manfred K. Warmuth · Wouter M Koolen · Nati Srebro · Satyen Kale · Malik Magdon-Ismail · Ashish Goel · Matei A Zaharia · David Woodruff · Ioannis Koutis · Benjamin Recht -
2012 Poster: Putting Bayes to sleep »
Wouter M Koolen · Dmitri Adamskiy · Manfred K. Warmuth -
2012 Spotlight: Putting Bayes to sleep »
Wouter M Koolen · Dmitri Adamskiy · Manfred K. Warmuth -
2011 Poster: Learning Eigenvectors for Free »
Wouter M Koolen · Wojciech Kotlowski · Manfred K. Warmuth -
2010 Poster: Repeated Games against Budgeted Adversaries »
Jacob D Abernethy · Manfred K. Warmuth -
2007 Spotlight: Boosting Algorithms for Maximizing the Soft Margin »
Manfred K. Warmuth · Karen Glocer · Gunnar Rätsch -
2007 Poster: Boosting Algorithms for Maximizing the Soft Margin »
Manfred K. Warmuth · Karen Glocer · Gunnar Rätsch -
2006 Poster: Randomized PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension »
Manfred K. Warmuth · Dima Kuzmin