Timezone: »
Kernel machines as well as neural networks possess universal function approximation properties. Nevertheless in practice their ways of choosing the appropriate function class differ. Specifically neural networks learn a representation by adapting their basis functions to the data and the task at hand, while kernel methods typically use a basis that is not adapted during training. In this work, we contrast random features of approximated kernel machines with learned features of neural networks. Our analysis reveals how these random and adaptive basis functions affect the quality of learning. Furthermore, we present basis adaptation schemes that allow for a more compact representation, while retaining the generalization properties of kernel machines.
Author Information
Maximilian Alber (TU Berlin)
Pieter-Jan Kindermans (Google Brain)
Kristof Schütt (TU Berlin)
Klaus-Robert Müller (TU Berlin)
Fei Sha (University of Southern California (USC))
More from the Same Authors
-
2022 Poster: TabNAS: Rejection Sampling for Neural Architecture Search on Tabular Datasets »
Chengrun Yang · Gabriel Bender · Hanxiao Liu · Pieter-Jan Kindermans · Madeleine Udell · Yifeng Lu · Quoc V Le · Da Huang -
2022 Poster: So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems »
Thorben Frank · Oliver Unke · Klaus-Robert Müller -
2021 Poster: Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging »
Ali Hashemi · Yijing Gao · Chang Cai · Sanjay Ghosh · Klaus-Robert Müller · Srikantan Nagarajan · Stefan Haufe -
2021 Poster: SE(3)-equivariant prediction of molecular wavefunctions and electronic densities »
Oliver Unke · Mihail Bogojeski · Michael Gastegger · Mario Geiger · Tess Smidt · Klaus-Robert Müller -
2020 : Panel »
Alan Aspuru-Guzik · Jennifer Listgarten · Klaus-Robert Müller · Nadine Schneider -
2020 : Invited Talk: Klaus Robert-Müller & Kristof Schütt: Machine Learning meets Quantum Chemistry »
Klaus-Robert Müller · Kristof Schütt -
2020 Session: Orals & Spotlights Track 01: Representation/Relational »
Laurens van der Maaten · Fei Sha -
2019 Demonstration: Learning Machines can Curl - Adaptive Deep Reinforcement Learning enables the robot Curly to win against human players in an icy world »
Dong-Ok Won · Sang-Hoon Lee · Klaus-Robert Müller · Seong-Whan Lee -
2019 Poster: A Benchmark for Interpretability Methods in Deep Neural Networks »
Sara Hooker · Dumitru Erhan · Pieter-Jan Kindermans · Been Kim -
2019 Poster: Explanations can be manipulated and geometry is to blame »
Ann-Kathrin Dombrowski · Maximillian Alber · Christopher Anders · Marcel Ackermann · Klaus-Robert Müller · Pan Kessel -
2018 Workshop: Machine Learning for Molecules and Materials »
José Miguel Hernández-Lobato · Klaus-Robert Müller · Brooks Paige · Matt Kusner · Stefan Chmiela · Kristof Schütt -
2018 Poster: Synthesize Policies for Transfer and Adaptation across Tasks and Environments »
Hexiang Hu · Liyu Chen · Boqing Gong · Fei Sha -
2018 Spotlight: Synthesize Policies for Transfer and Adaptation across Tasks and Environments »
Hexiang Hu · Liyu Chen · Boqing Gong · Fei Sha -
2017 : Methods 2 »
Pieter-Jan Kindermans -
2017 : Opening Remarks »
Klaus-Robert Müller -
2017 Workshop: Optimal Transport and Machine Learning »
Olivier Bousquet · Marco Cuturi · Gabriel Peyré · Fei Sha · Justin Solomon -
2017 Workshop: Interpreting, Explaining and Visualizing Deep Learning - Now what ? »
Klaus-Robert Müller · Andrea Vedaldi · Lars K Hansen · Wojciech Samek · Grégoire Montavon -
2017 Workshop: Machine Learning for Molecules and Materials »
Kristof Schütt · Klaus-Robert Müller · Anatole von Lilienfeld · José Miguel Hernández-Lobato · Klaus-Robert Müller · Alan Aspuru-Guzik · Bharath Ramsundar · Matt Kusner · Brooks Paige · Stefan Chmiela · Alexandre Tkatchenko · Anatole von Lilienfeld · Koji Tsuda -
2017 : Opening remarks »
Klaus-Robert Müller -
2017 Poster: SchNet: A continuous-filter convolutional neural network for modeling quantum interactions »
Kristof Schütt · Pieter-Jan Kindermans · Huziel Enoc Sauceda Felix · Stefan Chmiela · Alexandre Tkatchenko · Klaus-Robert Müller -
2016 Poster: Wasserstein Training of Restricted Boltzmann Machines »
Grégoire Montavon · Klaus-Robert Müller · Marco Cuturi -
2015 : Do Shallow Kernel Methods Match Deep Neural Networks »
Fei Sha -
2015 : Do Shallow Kernel Methods Match Deep Neural Networks? »
Fei Sha -
2014 Poster: Covariance shrinkage for autocorrelated data »
Daniel Bartz · Klaus-Robert Müller -
2014 Poster: Diverse Sequential Subset Selection for Supervised Video Summarization »
Boqing Gong · Wei-Lun Chao · Kristen Grauman · Fei Sha -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2013 Poster: Robust Spatial Filtering with Beta Divergence »
Wojciech Samek · Duncan Blythe · Klaus-Robert Müller · Motoaki Kawanabe -
2013 Poster: Reshaping Visual Datasets for Domain Adaptation »
Boqing Gong · Kristen Grauman · Fei Sha -
2013 Poster: Generalizing Analytic Shrinkage for Arbitrary Covariance Structures »
Daniel Bartz · Klaus-Robert Müller -
2013 Spotlight: Robust Spatial Filtering with Beta Divergence »
Wojciech Samek · Duncan Blythe · Klaus-Robert Müller · Motoaki Kawanabe -
2013 Spotlight: Generalizing Analytic Shrinkage for Arbitrary Covariance Structures »
Daniel Bartz · Klaus-Robert Müller -
2013 Poster: Similarity Component Analysis »
Soravit Changpinyo · Kuan Liu · Fei Sha -
2012 Poster: Non-linear Metric Learning »
Dor Kedem · Stephen Tyree · Kilian Q Weinberger · Fei Sha · Gert Lanckriet -
2012 Poster: Learning Invariant Representations of Molecules for Atomization Energy Prediction »
Grégoire Montavon · Katja Hansen · Siamac Fazli · Matthias Rupp · Franziska Biegler · Andreas Ziehe · Alexandre Tkatchenko · Anatole von Lilienfeld · Klaus-Robert Müller -
2012 Demonstration: A Fast Accurate Training-less P300 Speller: Unsupervised Learning Uncovers new Possibilities »
Pieter-Jan Kindermans · Hannes Verschore · David Verstraeten · Benjamin Schrauwen -
2012 Session: Oral Session 5 »
Fei Sha -
2012 Poster: Semantic Kernel Forests from Multiple Taxonomies »
Sung Ju Hwang · Kristen Grauman · Fei Sha -
2012 Poster: A P300 BCI for the Masses: Prior Information Enables Instant Unsupervised Spelling »
Pieter-Jan Kindermans · Hannes Verschore · David Verstraeten · Benjamin Schrauwen -
2011 Poster: Learning a Tree of Metrics with Disjoint Visual Features »
Sung Ju Hwang · Kristen Grauman · Fei Sha -
2011 Demonstration: Real-time social media analysis with TWIMPACT »
Mikio L Braun · Matthias L Jugel · Klaus-Robert Müller -
2010 Workshop: Challenges of Data Visualization »
Barbara Hammer · Laurens van der Maaten · Fei Sha · Alexander Smola -
2010 Workshop: Charting Chemical Space: Challenges and Opportunities for AI and Machine Learning »
Pierre Baldi · Klaus-Robert Müller · Gisbert Schneider -
2010 Poster: Unsupervised Kernel Dimension Reduction »
Meihong Wang · Fei Sha · Michael Jordan -
2010 Poster: Layer-wise analysis of deep networks with Gaussian kernels »
Grégoire Montavon · Mikio L Braun · Klaus-Robert Müller -
2009 Workshop: Statistical Machine Learning for Visual Analytics »
Guy Lebanon · Fei Sha -
2009 Poster: Efficient and Accurate Lp-Norm Multiple Kernel Learning »
Marius Kloft · Ulf Brefeld · Soeren Sonnenburg · Pavel Laskov · Klaus-Robert Müller · Alexander Zien -
2009 Poster: Subject independent EEG-based BCI decoding »
Siamac Fazli · Cristian Grozea · Márton Danóczy · Benjamin Blankertz · Florin Popescu · Klaus-Robert Müller -
2009 Spotlight: Subject independent EEG-based BCI decoding »
Siamac Fazli · Cristian Grozea · Márton Danóczy · Benjamin Blankertz · Florin Popescu · Klaus-Robert Müller -
2008 Poster: Playing Pinball with non-invasive BCI »
Michael W Tangermann (ne Schröder) · Matthias Krauledat · Konrad Grzeska · Max Sagebaum · Benjamin Blankertz · Klaus-Robert Müller -
2008 Poster: DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification »
Simon Lacoste-Julien · Fei Sha · Michael Jordan -
2008 Poster: Estimating vector fields using sparse basis field expansions »
Stefan Haufe · Vadim Nikulin · Andreas Ziehe · Klaus-Robert Müller · Guido Nolte -
2008 Session: Oral session 1: Clustering »
Fei Sha -
2007 Workshop: Machine Learning for Systems Problems (Part 2) »
Archana Ganapathi · Sumit Basu · Fei Sha · Emre Kiciman -
2007 Workshop: Machine Learning for Systems Problems (Part 1) »
Archana Ganapathi · Sumit Basu · Fei Sha · Emre Kiciman -
2007 Spotlight: Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing »
Benjamin Blankertz · Motoaki Kawanabe · Ryota Tomioka · Friederike Hohlefeld · Vadim Nikulin · Klaus-Robert Müller -
2007 Session: Session 7: Systems and Applications »
Fei Sha -
2007 Poster: Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing »
Benjamin Blankertz · Motoaki Kawanabe · Ryota Tomioka · Friederike Hohlefeld · Vadim Nikulin · Klaus-Robert Müller -
2007 Poster: Heterogeneous Component Analysis »
Shigeyuki Oba · Motoaki Kawanabe · Klaus-Robert Müller · Shin Ishii -
2007 Spotlight: Heterogeneous Component Analysis »
Shigeyuki Oba · Motoaki Kawanabe · Klaus-Robert Müller · Shin Ishii -
2006 Workshop: Current Trends in Brain-Computer Interfacing »
Klaus-Robert Müller · José del R. Millán · Matthias Krauledat · Roderick Murray-Smith · Benjamin Blankertz -
2006 Poster: Large Margin Gaussian Mixture Models for Automatic Speech Recognition »
Fei Sha · Lawrence Saul -
2006 Poster: Logistic Regression for Single Trial EEG Classification »
Ryota Tomioka · Kazuyuki Aihara · Klaus-Robert Müller -
2006 Poster: Towards Zero-Training for Brain-Computer Interface Experiments »
Matthias Krauledat · Michael Schröder · Benjamin Blankertz · Klaus-Robert Müller -
2006 Talk: Large Margin Gaussian Mixture Models for Automatic Speech Recognition »
Fei Sha · Lawrence Saul -
2006 Spotlight: Logistic Regression for Single Trial EEG Classification »
Ryota Tomioka · Kazuyuki Aihara · Klaus-Robert Müller -
2006 Poster: Inducing Metric Violations in Human Similarity Judgements »
Julian Laub · Jakob H Macke · Klaus-Robert Müller · Felix A Wichmann -
2006 Poster: Denoising and Dimension Reduction in Feature Space »
Mikio L Braun · Joachim M Buhmann · Klaus-Robert Müller -
2006 Poster: Graph Regularization for Maximum Variance Unfolding with an Application to Sensor Localization »
Kilian Q Weinberger · Fei Sha · Qihui Zhu · Lawrence Saul