SGD Learns the Conjugate Kernel Class of the Network
Amit Daniely

Mon Dec 4th 06:30 -- 10:30 PM @ Pacific Ballroom #209 #None

We show that the standard stochastic gradient decent (SGD) algorithm is guaranteed to learn, in polynomial time, a function that is competitive with the best function in the conjugate kernel space of the network, as defined in Daniely, Frostig and Singer. The result holds for log-depth networks from a rich family of architectures. To the best of our knowledge, it is the first polynomial-time guarantee for the standard neural network learning algorithm for networks of depth more that two. As corollaries, it follows that for neural networks of any depth between 2 and log(n), SGD is guaranteed to learn, in polynomial time, constant degree polynomials with polynomially bounded coefficients. Likewise, it follows that SGD on large enough networks can learn any continuous function (not in polynomial time), complementing classical expressivity results.

Author Information

Amit Daniely (Google Research)

More from the Same Authors