Timezone: »
We revisit the classical problem of optimal experimental design (OED) under a new mathematical model grounded in a geometric motivation. Specifically, we introduce models based on elementary symmetric polynomials; these polynomials capture "partial volumes" and offer a graded interpolation between the widely used A-optimal and D-optimal design models, obtaining each of them as special cases. We analyze properties of our models, and derive both greedy and convex-relaxation algorithms for computing the associated designs. Our analysis establishes approximation guarantees on these algorithms, while our empirical results substantiate our claims and demonstrate a curious phenomenon concerning our greedy algorithm. Finally, as a byproduct, we obtain new results on the theory of elementary symmetric polynomials that may be of independent interest.
Author Information
Zelda Mariet (MIT)
Suvrit Sra (MIT)
Suvrit Sra is a Research Faculty at the Laboratory for Information and Decision Systems (LIDS) at Massachusetts Institute of Technology (MIT). He obtained his PhD in Computer Science from the University of Texas at Austin in 2007. Before moving to MIT, he was a Senior Research Scientist at the Max Planck Institute for Intelligent Systems, in Tübingen, Germany. He has also held visiting faculty positions at UC Berkeley (EECS) and Carnegie Mellon University (Machine Learning Department) during 2013-2014. His research is dedicated to bridging a number of mathematical areas such as metric geometry, matrix analysis, convex analysis, probability theory, and optimization with machine learning; more broadly, his work involves algorithmically grounded topics within engineering and science. He has been a co-chair for OPT2008-2015, NIPS workshops on "Optimization for Machine Learning," and has also edited a volume of the same name (MIT Press, 2011).
More from the Same Authors
-
2021 : Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning »
Zachary Nado · Neil Band · Mark Collier · Josip Djolonga · Mike Dusenberry · Sebastian Farquhar · Qixuan Feng · Angelos Filos · Marton Havasi · Rodolphe Jenatton · Ghassen Jerfel · Jeremiah Liu · Zelda Mariet · Jeremy Nixon · Shreyas Padhy · Jie Ren · Tim G. J. Rudner · Yeming Wen · Florian Wenzel · Kevin Murphy · D. Sculley · Balaji Lakshminarayanan · Jasper Snoek · Yarin Gal · Dustin Tran -
2023 Poster: The Curious Role of Normalization in Sharpness-Aware Minimization »
Yan Dai · Kwangjun Ahn · Suvrit Sra -
2023 Poster: Transformers learn to implement preconditioned gradient descent for in-context learning »
Kwangjun Ahn · Xiang Cheng · Hadi Daneshmand · Suvrit Sra -
2022 Poster: CCCP is Frank-Wolfe in disguise »
Alp Yurtsever · Suvrit Sra -
2022 Poster: Efficient Sampling on Riemannian Manifolds via Langevin MCMC »
Xiang Cheng · Jingzhao Zhang · Suvrit Sra -
2021 Poster: Can contrastive learning avoid shortcut solutions? »
Joshua Robinson · Li Sun · Ke Yu · Kayhan Batmanghelich · Stefanie Jegelka · Suvrit Sra -
2021 Poster: Three Operator Splitting with Subgradients, Stochastic Gradients, and Adaptive Learning Rates »
Alp Yurtsever · Alex Gu · Suvrit Sra -
2019 Poster: DppNet: Approximating Determinantal Point Processes with Deep Networks »
Zelda Mariet · Yaniv Ovadia · Jasper Snoek -
2018 Poster: Maximizing Induced Cardinality Under a Determinantal Point Process »
Jennifer Gillenwater · Alex Kulesza · Sergei Vassilvitskii · Zelda Mariet -
2018 Poster: Exponentiated Strongly Rayleigh Distributions »
Zelda Mariet · Suvrit Sra · Stefanie Jegelka -
2017 Poster: Polynomial time algorithms for dual volume sampling »
Chengtao Li · Stefanie Jegelka · Suvrit Sra -
2016 : Taming non-convexity via geometry »
Suvrit Sra -
2016 Poster: Kronecker Determinantal Point Processes »
Zelda Mariet · Suvrit Sra -
2016 Tutorial: Large-Scale Optimization: Beyond Stochastic Gradient Descent and Convexity »
Suvrit Sra · Francis Bach -
2015 Poster: Matrix Manifold Optimization for Gaussian Mixtures »
Reshad Hosseini · Suvrit Sra -
2015 Poster: On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants »
Sashank J. Reddi · Ahmed Hefny · Suvrit Sra · Barnabas Poczos · Alexander Smola