Timezone: »
Poster
Revenue Optimization with Approximate Bid Predictions
Andres Munoz Medina · Sergei Vassilvitskii
In the context of advertising auctions, finding good reserve prices is a notoriously challenging learning problem. This is due to the heterogeneity of ad opportunity types, and the non-convexity of the objective function. In this work, we show how to reduce reserve price optimization to the standard setting of prediction under squared loss, a well understood problem in the learning community. We further bound the gap between the expected bid and revenue in terms of the average loss of the predictor. This is the first result that formally relates the revenue gained to the quality of a standard machine learned model.
Author Information
Andres Munoz Medina (Google)
Sergei Vassilvitskii (Google)
More from the Same Authors
-
2021 : A Joint Exponential Mechanism for Differentially Private Top-k Set »
Andres Munoz Medina · Matthew Joseph · Jennifer Gillenwater · Monica Ribero Diaz -
2021 : Population Level Privacy Leakage in Binary Classification wtih Label Noise »
Róbert Busa-Fekete · Andres Munoz Medina · Umar Syed · Sergei Vassilvitskii -
2021 : On the Pitfalls of Label Differential Privacy »
Andres Munoz Medina · Róbert Busa-Fekete · Umar Syed · Sergei Vassilvitskii -
2022 Poster: Private and Communication-Efficient Algorithms for Entropy Estimation »
Gecia Bravo-Hermsdorff · Róbert Busa-Fekete · Mohammad Ghavamzadeh · Andres Munoz Medina · Umar Syed -
2022 Affinity Workshop: LatinX in AI »
Maria Luisa Santiago · Juan Banda · CJ Barberan · MIGUEL GONZALEZ-MENDOZA · Caio Davi · Sara Garcia · Jorge Diaz · Fanny Nina Paravecino · Carlos Miranda · Gissella Bejarano Nicho · Fabian Latorre · Andres Munoz Medina · Abraham Ramos · Laura Montoya · Isabel Metzger · Andres Marquez · Miguel Felipe Arevalo-Castiblanco · Jorge Mendez · Karla Caballero · Atnafu Lambebo Tonja · Germán Olivo · Karla Caballero Barajas · Francisco Zabala -
2021 : Population Level Privacy Leakage in Binary Classification wtih Label Noise »
Róbert Busa-Fekete · Andres Munoz Medina · Umar Syed · Sergei Vassilvitskii -
2021 Social: Latinx in AI Social »
Andres Munoz Medina · Maria Luisa Santiago -
2021 : Closing Remarks »
Andres Munoz Medina -
2021 : Q&A Oral presentations »
Matias Valdenegro-Toro · Andres Munoz Medina · Johan Obando Ceron · Anil Batra -
2021 : On the Pitfalls of Label Differential Privacy »
Andres Munoz Medina · Róbert Busa-Fekete · Umar Syed · Sergei Vassilvitskii -
2021 Affinity Workshop: LatinX in AI (LXAI) Research @ NeurIPS 2021 »
Maria Luisa Santiago · Andres Munoz Medina · Laura Montoya · Karla Caballero Barajas · Isabel Metzger · Jose Gallego-Posada · Juan Banda · Gabriela Vega · Amanda Duarte · Patrick Feeney · Lourdes Ramírez Cerna · Walter M Mayor · Omar U. Florez · Rosina Weber · Rocio Zorrilla -
2020 Poster: Sliding Window Algorithms for k-Clustering Problems »
Michele Borassi · Alessandro Epasto · Silvio Lattanzi · Sergei Vassilvitskii · Morteza Zadimoghaddam -
2020 Poster: Fair Hierarchical Clustering »
Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Benjamin Moseley · Philip Pham · Sergei Vassilvitskii · Yuyan Wang -
2019 : Coffee Break & Poster Session 1 »
Yan Zhang · Jonathon Hare · Adam Prugel-Bennett · Po Leung · Patrick Flaherty · Pitchaya Wiratchotisatian · Alessandro Epasto · Silvio Lattanzi · Sergei Vassilvitskii · Morteza Zadimoghaddam · Theja Tulabandhula · Fabian Fuchs · Adam Kosiorek · Ingmar Posner · William Hang · Anna Goldie · Sujith Ravi · Azalia Mirhoseini · Yuwen Xiong · Mengye Ren · Renjie Liao · Raquel Urtasun · Haici Zhang · Michele Borassi · Shengda Luo · Andrew Trapp · Geoffroy Dubourg-Felonneau · Yasmeen Kussad · Christopher Bender · Manzil Zaheer · Junier Oliva · Michał Stypułkowski · Maciej Zieba · Austin Dill · Chun-Liang Li · Songwei Ge · Eunsu Kang · Oiwi Parker Jones · Kelvin Ka Wing Wong · Joshua Payne · Yang Li · Azade Nazi · Erkut Erdem · Aykut Erdem · Kevin O'Connor · Juan J Garcia · Maciej Zamorski · Jan Chorowski · Deeksha Sinha · Harry Clifford · John W Cassidy -
2019 Poster: Differentially Private Covariance Estimation »
Kareem Amin · Travis Dick · Alex Kulesza · Andres Munoz Medina · Sergei Vassilvitskii -
2018 Poster: Maximizing Induced Cardinality Under a Determinantal Point Process »
Jennifer Gillenwater · Alex Kulesza · Sergei Vassilvitskii · Zelda Mariet -
2017 Poster: Fair Clustering Through Fairlets »
Flavio Chierichetti · Ravi Kumar · Silvio Lattanzi · Sergei Vassilvitskii -
2017 Spotlight: Fair Clustering Through Fairlets »
Flavio Chierichetti · Ravi Kumar · Silvio Lattanzi · Sergei Vassilvitskii -
2017 Poster: Statistical Cost Sharing »
Eric Balkanski · Umar Syed · Sergei Vassilvitskii -
2016 Poster: On Mixtures of Markov Chains »
Rishi Gupta · Ravi Kumar · Sergei Vassilvitskii