Timezone: »
Poster
Accelerated consensus via Min-Sum Splitting
Patrick Rebeschini · Sekhar C Tatikonda
We apply the Min-Sum message-passing protocol to solve the consensus problem in distributed optimization. We show that while the ordinary Min-Sum algorithm does not converge, a modified version of it known as Splitting yields convergence to the problem solution. We prove that a proper choice of the tuning parameters allows Min-Sum Splitting to yield subdiffusive accelerated convergence rates, matching the rates obtained by shift-register methods. The acceleration scheme embodied by Min-Sum Splitting for the consensus problem bears similarities with lifted Markov chains techniques and with multi-step first order methods in convex optimization.
Author Information
Patrick Rebeschini (University of Oxford)
Sekhar C Tatikonda (Yale University)
More from the Same Authors
-
2023 Poster: A Novel Framework for Policy Mirror Descent with General Parametrization and Linear Convergence »
Carlo Alfano · Rui Yuan · Patrick Rebeschini -
2023 Poster: Optimal Convergence Rate for Exact Policy Mirror Descent in Discounted Markov Decision Processes »
Emmeran Johnson · Ciara Pike-Burke · Patrick Rebeschini -
2021 Poster: Implicit Regularization in Matrix Sensing via Mirror Descent »
Fan Wu · Patrick Rebeschini -
2021 Poster: Momentum Centering and Asynchronous Update for Adaptive Gradient Methods »
Juntang Zhuang · Yifan Ding · Tommy Tang · Nicha Dvornek · Sekhar C Tatikonda · James Duncan -
2021 Poster: Distributed Machine Learning with Sparse Heterogeneous Data »
Dominic Richards · Sahand Negahban · Patrick Rebeschini -
2021 Poster: Time-independent Generalization Bounds for SGLD in Non-convex Settings »
Tyler Farghly · Patrick Rebeschini -
2021 Poster: On Optimal Interpolation in Linear Regression »
Eduard Oravkin · Patrick Rebeschini -
2020 Poster: AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients »
Juntang Zhuang · Tommy Tang · Yifan Ding · Sekhar C Tatikonda · Nicha Dvornek · Xenophon Papademetris · James Duncan -
2020 Poster: A Continuous-Time Mirror Descent Approach to Sparse Phase Retrieval »
Fan Wu · Patrick Rebeschini -
2020 Spotlight: AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients »
Juntang Zhuang · Tommy Tang · Yifan Ding · Sekhar C Tatikonda · Nicha Dvornek · Xenophon Papademetris · James Duncan -
2020 Spotlight: A Continuous-Time Mirror Descent Approach to Sparse Phase Retrieval »
Fan Wu · Patrick Rebeschini -
2020 Poster: The Statistical Complexity of Early-Stopped Mirror Descent »
Tomas Vaskevicius · Varun Kanade · Patrick Rebeschini -
2020 Spotlight: The Statistical Complexity of Early-Stopped Mirror Descent »
Tomas Vaskevicius · Varun Kanade · Patrick Rebeschini -
2019 Poster: Implicit Regularization for Optimal Sparse Recovery »
Tomas Vaskevicius · Varun Kanade · Patrick Rebeschini -
2019 Poster: Optimal Statistical Rates for Decentralised Non-Parametric Regression with Linear Speed-Up »
Dominic Richards · Patrick Rebeschini -
2019 Poster: Decentralized Cooperative Stochastic Bandits »
David MartÃnez-Rubio · Varun Kanade · Patrick Rebeschini -
2014 Poster: Testing Unfaithful Gaussian Graphical Models »
De Wen Soh · Sekhar C Tatikonda