Timezone: »
A fundamental goal in network neuroscience is to understand how activity in one brain region drives activity elsewhere, a process referred to as effective connectivity. Here we propose to model this causal interaction using integro-differential equations and causal kernels that allow for a rich analysis of effective connectivity. The approach combines the tractability and flexibility of autoregressive modeling with the biophysical interpretability of dynamic causal modeling. The causal kernels are learned nonparametrically using Gaussian process regression, yielding an efficient framework for causal inference. We construct a novel class of causal covariance functions that enforce the desired properties of the causal kernels, an approach which we call GP CaKe. By construction, the model and its hyperparameters have biophysical meaning and are therefore easily interpretable. We demonstrate the efficacy of GP CaKe on a number of simulations and give an example of a realistic application on magnetoencephalography (MEG) data.
Author Information
Luca Ambrogioni (Donders Institute)
Max Hinne (Radboud University)
Marcel Van Gerven (Radboud University)
Eric Maris (Donders Institute)
More from the Same Authors
-
2018 Poster: Wasserstein Variational Inference »
Luca Ambrogioni · Umut Güçlü · Yağmur Güçlütürk · Max Hinne · Marcel A. J. van Gerven · Eric Maris -
2016 Workshop: Representation Learning in Artificial and Biological Neural Networks »
Leila Wehbe · Marcel Van Gerven · Moritz Grosse-Wentrup · Irina Rish · Brian Murphy · Georg Langs · Guillermo Cecchi · Anwar O Nunez-Elizalde -
2009 Poster: Bayesian Source Localization with the Multivariate Laplace Prior »
Marcel Van Gerven · Botond Cseke · Robert Oostenveld · Tom Heskes