Timezone: »
Learning meaningful representations that maintain the content necessary for a particular task while filtering away detrimental variations is a problem of great interest in machine learning. In this paper, we tackle the problem of learning representations invariant to a specific factor or trait of data. The representation learning process is formulated as an adversarial minimax game. We analyze the optimal equilibrium of such a game and find that it amounts to maximizing the uncertainty of inferring the detrimental factor given the representation while maximizing the certainty of making task-specific predictions. On three benchmark tasks, namely fair and bias-free classification, language-independent generation, and lighting-independent image classification, we show that the proposed framework induces an invariant representation, and leads to better generalization evidenced by the improved performance.
Author Information
Qizhe Xie (Carnegie Mellon University)
Zihang Dai (Carnegie Mellon University)
Yulun Du (Carnegie Mellon University)
Eduard Hovy (CMU)
Graham Neubig (Carnegie Mellon University)
More from the Same Authors
-
2021 Spotlight: Combiner: Full Attention Transformer with Sparse Computation Cost »
Hongyu Ren · Hanjun Dai · Zihang Dai · Mengjiao (Sherry) Yang · Jure Leskovec · Dale Schuurmans · Bo Dai -
2022 : Automating Auxiliary Learning »
Graham Neubig -
2022 : Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval »
Graham Neubig -
2022 : Graham Neubig - "Unsupervised Methods for Table and Schema Understanding" »
Graham Neubig -
2022 Poster: Learning to Scaffold: Optimizing Model Explanations for Teaching »
Patrick Fernandes · Marcos Treviso · Danish Pruthi · André Martins · Graham Neubig -
2021 Poster: Combiner: Full Attention Transformer with Sparse Computation Cost »
Hongyu Ren · Hanjun Dai · Zihang Dai · Mengjiao (Sherry) Yang · Jure Leskovec · Dale Schuurmans · Bo Dai -
2021 Poster: CoAtNet: Marrying Convolution and Attention for All Data Sizes »
Zihang Dai · Hanxiao Liu · Quoc V Le · Mingxing Tan -
2021 Poster: Searching for Efficient Transformers for Language Modeling »
David So · Wojciech Mańke · Hanxiao Liu · Zihang Dai · Noam Shazeer · Quoc V Le -
2021 Poster: Pay Attention to MLPs »
Hanxiao Liu · Zihang Dai · David So · Quoc V Le -
2021 Poster: BARTScore: Evaluating Generated Text as Text Generation »
Weizhe Yuan · Graham Neubig · Pengfei Liu -
2020 Poster: Learning Sparse Prototypes for Text Generation »
Junxian He · Taylor Berg-Kirkpatrick · Graham Neubig -
2020 Poster: Unsupervised Data Augmentation for Consistency Training »
Qizhe Xie · Zihang Dai · Eduard Hovy · Thang Luong · Quoc V Le -
2020 Poster: Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing »
Zihang Dai · Guokun Lai · Yiming Yang · Quoc V Le -
2019 Poster: XLNet: Generalized Autoregressive Pretraining for Language Understanding »
Zhilin Yang · Zihang Dai · Yiming Yang · Jaime Carbonell · Russ Salakhutdinov · Quoc V Le -
2019 Oral: XLNet: Generalized Autoregressive Pretraining for Language Understanding »
Zhilin Yang · Zihang Dai · Yiming Yang · Jaime Carbonell · Russ Salakhutdinov · Quoc V Le -
2019 Poster: Are Sixteen Heads Really Better than One? »
Paul Michel · Omer Levy · Graham Neubig -
2019 Poster: Re-examination of the Role of Latent Variables in Sequence Modeling »
Guokun Lai · Zihang Dai · Yiming Yang · Shinjae Yoo -
2017 : Simple and Efficient Implementation of Neural Nets with Automatic Operation Batching »
Graham Neubig -
2017 Poster: Good Semi-supervised Learning That Requires a Bad GAN »
Zihang Dai · Zhilin Yang · Fan Yang · William Cohen · Ruslan Salakhutdinov -
2017 Poster: On-the-fly Operation Batching in Dynamic Computation Graphs »
Graham Neubig · Yoav Goldberg · Chris Dyer