Timezone: »
We consider the Hypothesis Transfer Learning (HTL) problem where one incorporates a hypothesis trained on the source domain into the learning procedure of the target domain. Existing theoretical analysis either only studies specific algorithms or only presents upper bounds on the generalization error but not on the excess risk. In this paper, we propose a unified algorithm-dependent framework for HTL through a novel notion of transformation functions, which characterizes the relation between the source and the target domains. We conduct a general risk analysis of this framework and in particular, we show for the first time, if two domains are related, HTL enjoys faster convergence rates of excess risks for Kernel Smoothing and Kernel Ridge Regression than those of the classical non-transfer learning settings. We accompany this framework with an analysis of cross-validation for HTL to search for the best transfer technique and gracefully reduce to non-transfer learning when HTL is not helpful. Experiments on robotics and neural imaging data demonstrate the effectiveness of our framework.
Author Information
Simon Du (Carnegie Mellon University)
Jayanth Koushik (Carnegie Mellon University)
Aarti Singh (CMU)
Barnabas Poczos (Carnegie Mellon University)
More from the Same Authors
-
2021 Spotlight: Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Runlong Zhou · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2022 : Improving Molecule Properties Through 2-Stage VAE »
Chenghui Zhou · Barnabas Poczos -
2021 Poster: Local Signal Adaptivity: Provable Feature Learning in Neural Networks Beyond Kernels »
Stefani Karp · Ezra Winston · Yuanzhi Li · Aarti Singh -
2021 Poster: Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Runlong Zhou · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Poster: Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP »
Zihan Zhang · Jiaqi Yang · Xiangyang Ji · Simon Du -
2021 Poster: Corruption Robust Active Learning »
Yifang Chen · Simon Du · Kevin Jamieson -
2021 Poster: Nearly Horizon-Free Offline Reinforcement Learning »
Tongzheng Ren · Jialian Li · Bo Dai · Simon Du · Sujay Sanghavi -
2021 Poster: Global Convergence of Gradient Descent for Asymmetric Low-Rank Matrix Factorization »
Tian Ye · Simon Du -
2020 Poster: Modeling Task Effects on Meaning Representation in the Brain via Zero-Shot MEG Prediction »
Mariya Toneva · Otilia Stretcu · Barnabas Poczos · Leila Wehbe · Tom Mitchell -
2020 Poster: Preference-based Reinforcement Learning with Finite-Time Guarantees »
Yichong Xu · Ruosong Wang · Lin Yang · Aarti Singh · Artur Dubrawski -
2020 Spotlight: Preference-based Reinforcement Learning with Finite-Time Guarantees »
Yichong Xu · Ruosong Wang · Lin Yang · Aarti Singh · Artur Dubrawski -
2020 Poster: Robust Density Estimation under Besov IPM Losses »
Ananya Uppal · Shashank Singh · Barnabas Poczos -
2020 Spotlight: Robust Density Estimation under Besov IPM Losses »
Ananya Uppal · Shashank Singh · Barnabas Poczos -
2019 : Opening Remarks »
Manzil Zaheer · Nicholas Monath · Ari Kobren · Junier Oliva · Barnabas Poczos · Ruslan Salakhutdinov · Andrew McCallum -
2019 Workshop: Sets and Partitions »
Nicholas Monath · Manzil Zaheer · Andrew McCallum · Ari Kobren · Junier Oliva · Barnabas Poczos · Ruslan Salakhutdinov -
2019 : Poster Session »
Rishav Chourasia · Yichong Xu · Corinna Cortes · Chien-Yi Chang · Yoshihiro Nagano · So Yeon Min · Benedikt Boecking · Phi Vu Tran · Kamyar Ghasemipour · Qianggang Ding · Shouvik Mani · Vikram Voleti · Rasool Fakoor · Miao Xu · Kenneth Marino · Lisa Lee · Volker Tresp · Jean-Francois Kagy · Marvin Zhang · Barnabas Poczos · Dinesh Khandelwal · Adrien Bardes · Evan Shelhamer · Jiacheng Zhu · Ziming Li · Xiaoyan Li · Dmitrii Krasheninnikov · Ruohan Wang · Mayoore Jaiswal · Emad Barsoum · Suvansh Sanjeev · Theeraphol Wattanavekin · Qizhe Xie · Sifan Wu · Yuki Yoshida · David Kanaa · Sina Khoshfetrat Pakazad · Mehdi Maasoumy -
2019 Poster: Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses »
Ananya Uppal · Shashank Singh · Barnabas Poczos -
2019 Poster: On Testing for Biases in Peer Review »
Ivan Stelmakh · Nihar Shah · Aarti Singh -
2019 Oral: Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses »
Ananya Uppal · Shashank Singh · Barnabas Poczos -
2019 Spotlight: On Testing for Biases in Peer Review »
Ivan Stelmakh · Nihar Shah · Aarti Singh -
2019 Poster: Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels »
Simon Du · Kangcheng Hou · Russ Salakhutdinov · Barnabas Poczos · Ruosong Wang · Keyulu Xu -
2019 Poster: Learning Local Search Heuristics for Boolean Satisfiability »
Emre Yolcu · Barnabas Poczos -
2018 Poster: Nonparametric Density Estimation under Adversarial Losses »
Shashank Singh · Ananya Uppal · Boyue Li · Chun-Liang Li · Manzil Zaheer · Barnabas Poczos -
2018 Poster: How Many Samples are Needed to Estimate a Convolutional Neural Network? »
Simon Du · Yining Wang · Xiyu Zhai · Sivaraman Balakrishnan · Russ Salakhutdinov · Aarti Singh -
2018 Poster: Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced »
Simon Du · Wei Hu · Jason Lee -
2018 Poster: Optimization of Smooth Functions with Noisy Observations: Local Minimax Rates »
Yining Wang · Sivaraman Balakrishnan · Aarti Singh -
2018 Poster: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2018 Spotlight: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2017 : Distribution Regression and its Applications. »
Barnabas Poczos -
2017 Oral: Deep Sets »
Manzil Zaheer · Satwik Kottur · Siamak Ravanbakhsh · Barnabas Poczos · Ruslan Salakhutdinov · Alexander Smola -
2017 Poster: MMD GAN: Towards Deeper Understanding of Moment Matching Network »
Chun-Liang Li · Wei-Cheng Chang · Yu Cheng · Yiming Yang · Barnabas Poczos -
2017 Poster: Deep Sets »
Manzil Zaheer · Satwik Kottur · Siamak Ravanbakhsh · Barnabas Poczos · Ruslan Salakhutdinov · Alexander Smola -
2017 Poster: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2017 Spotlight: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2017 Poster: On the Power of Truncated SVD for General High-rank Matrix Estimation Problems »
Simon Du · Yining Wang · Aarti Singh -
2017 Poster: Noise-Tolerant Interactive Learning Using Pairwise Comparisons »
Yichong Xu · Hongyang Zhang · Aarti Singh · Artur Dubrawski · Kyle Miller -
2016 Poster: Variance Reduction in Stochastic Gradient Langevin Dynamics »
Kumar Avinava Dubey · Sashank J. Reddi · Sinead Williamson · Barnabas Poczos · Alexander Smola · Eric Xing -
2016 Poster: Data Poisoning Attacks on Factorization-Based Collaborative Filtering »
Bo Li · Yining Wang · Aarti Singh · Yevgeniy Vorobeychik -
2016 Poster: The Multi-fidelity Multi-armed Bandit »
Kirthevasan Kandasamy · Gautam Dasarathy · Barnabas Poczos · Jeff Schneider -
2016 Poster: Finite-Sample Analysis of Fixed-k Nearest Neighbor Density Functional Estimators »
Shashank Singh · Barnabas Poczos -
2016 Poster: Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization »
Sashank J. Reddi · Suvrit Sra · Barnabas Poczos · Alexander Smola -
2016 Poster: Gaussian Process Bandit Optimisation with Multi-fidelity Evaluations »
Kirthevasan Kandasamy · Gautam Dasarathy · Junier B Oliva · Jeff Schneider · Barnabas Poczos -
2016 Poster: Efficient Nonparametric Smoothness Estimation »
Shashank Singh · Simon Du · Barnabas Poczos -
2015 : Tsybakov Noise Adaptive Margin-Based Active Learning »
Aarti Singh -
2015 Poster: Differentially private subspace clustering »
Yining Wang · Yu-Xiang Wang · Aarti Singh -
2015 Poster: Nonparametric von Mises Estimators for Entropies, Divergences and Mutual Informations »
Kirthevasan Kandasamy · Akshay Krishnamurthy · Barnabas Poczos · Larry Wasserman · james m robins -
2015 Poster: On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants »
Sashank J. Reddi · Ahmed Hefny · Suvrit Sra · Barnabas Poczos · Alexander Smola -
2014 Poster: Exponential Concentration of a Density Functional Estimator »
Shashank Singh · Barnabas Poczos -
2013 Poster: Near-optimal Anomaly Detection in Graphs using Lovasz Extended Scan Statistic »
James L Sharpnack · Akshay Krishnamurthy · Aarti Singh -
2013 Poster: Low-Rank Matrix and Tensor Completion via Adaptive Sampling »
Akshay Krishnamurthy · Aarti Singh -
2013 Poster: Minimax Theory for High-dimensional Gaussian Mixtures with Sparse Mean Separation »
Martin Azizyan · Aarti Singh · Larry Wasserman -
2013 Poster: Cluster Trees on Manifolds »
Sivaraman Balakrishnan · Srivatsan Narayanan · Alessandro Rinaldo · Aarti Singh · Larry Wasserman -
2012 Workshop: Algebraic Topology and Machine Learning »
Sivaraman Balakrishnan · Alessandro Rinaldo · Donald Sheehy · Aarti Singh · Larry Wasserman -
2011 Poster: Minimax Localization of Structural Information in Large Noisy Matrices »
Mladen Kolar · Sivaraman Balakrishnan · Alessandro Rinaldo · Aarti Singh -
2011 Poster: Noise Thresholds for Spectral Clustering »
Sivaraman Balakrishnan · Min Xu · Akshay Krishnamurthy · Aarti Singh -
2011 Spotlight: Noise Thresholds for Spectral Clustering »
Sivaraman Balakrishnan · Min Xu · Akshay Krishnamurthy · Aarti Singh -
2011 Spotlight: Minimax Localization of Structural Information in Large Noisy Matrices »
Mladen Kolar · Sivaraman Balakrishnan · Alessandro Rinaldo · Aarti Singh -
2011 Poster: Group Anomaly Detection using Flexible Genre Models »
Liang Xiong · Barnabas Poczos · Jeff Schneider -
2010 Oral: Identifying graph-structured activation patterns in networks »
James L Sharpnack · Aarti Singh -
2010 Poster: Identifying graph-structured activation patterns in networks »
James L Sharpnack · Aarti Singh -
2010 Poster: Estimation of Renyi Entropy and Mutual Information Based on Generalized Nearest-Neighbor Graphs »
David Pal · Barnabas Poczos · Csaba Szepesvari -
2008 Poster: Unlabeled data: Now it helps, now it doesn't »
Aarti Singh · Rob Nowak · Jerry Zhu -
2008 Oral: Unlabeled data: Now it helps, now it doesn't »
Aarti Singh · Rob Nowak · Jerry Zhu