Timezone: »
Synthesizing realistic profile faces is promising for more efficiently training deep pose-invariant models for large-scale unconstrained face recognition, by populating samples with extreme poses and avoiding tedious annotations. However, learning from synthetic faces may not achieve the desired performance due to the discrepancy between distributions of the synthetic and real face images. To narrow this gap, we propose a Dual-Agent Generative Adversarial Network (DA-GAN) model, which can improve the realism of a face simulator's output using unlabeled real faces, while preserving the identity information during the realism refinement. The dual agents are specifically designed for distinguishing real v.s. fake and identities simultaneously. In particular, we employ an off-the-shelf 3D face model as a simulator to generate profile face images with varying poses. DA-GAN leverages a fully convolutional network as the generator to generate high-resolution images and an auto-encoder as the discriminator with the dual agents. Besides the novel architecture, we make several key modifications to the standard GAN to preserve pose and texture, preserve identity and stabilize training process: (i) a pose perception loss; (ii) an identity perception loss; (iii) an adversarial loss with a boundary equilibrium regularization term. Experimental results show that DA-GAN not only presents compelling perceptual results but also significantly outperforms state-of-the-arts on the large-scale and challenging NIST IJB-A unconstrained face recognition benchmark. In addition, the proposed DA-GAN is also promising as a new approach for solving generic transfer learning problems more effectively.
Author Information
Jian Zhao (National University of Singapore)
聚焦 Knowledge changes fate.
Lin Xiong (Panasonic R&D Center Singapore)
Lin Xiong received the B.S. degree from Shaanxi University of Science & Technology in 2003, and he received the Ph.D. degree with School of Electronic Engineering, Xidian University, China, in 2014. He is currently a research engineer of Learning & Vision, Core Technology Group, Panasonic R&D Center Singapore, Singapore. His current research interests include unconstrained/large-scale face recognition, person re-identification, deep learning architecture engineering, transfer learning, Riemannian manifold optimization, sparse and low-rank matrix factorization.
Panasonic Karlekar Jayashree (Panasonic, Singapore)
Jianshu Li (National University of Singapore)
Fang Zhao (National University of Singapore)
Zhecan Wang (Franklin. W. Olin College of Engineering)
Panasonic Sugiri Pranata (Panasonic, Singapore)
Panasonic Shengmei Shen (Panasonic, Singapore)
Shuicheng Yan (National University of Singapore)
Jiashi Feng (National University of Singapore)
More from the Same Authors
-
2021 Workshop: Distribution shifts: connecting methods and applications (DistShift) »
Shiori Sagawa · Pang Wei Koh · Fanny Yang · Hongseok Namkoong · Jiashi Feng · Kate Saenko · Percy Liang · Sarah Bird · Sergey Levine -
2021 Poster: Towards Understanding Why Lookahead Generalizes Better Than SGD and Beyond »
Pan Zhou · Hanshu Yan · Xiaotong Yuan · Jiashi Feng · Shuicheng Yan -
2021 Poster: How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial Robustness? »
Xinshuai Dong · Anh Tuan Luu · Min Lin · Shuicheng Yan · Hanwang Zhang -
2021 Poster: Direct Multi-view Multi-person 3D Pose Estimation »
tao wang · Jianfeng Zhang · Yujun Cai · Shuicheng Yan · Jiashi Feng -
2020 Poster: Towards Theoretically Understanding Why Sgd Generalizes Better Than Adam in Deep Learning »
Pan Zhou · Jiashi Feng · Chao Ma · Caiming Xiong · Steven Chu Hong Hoi · Weinan E -
2020 Poster: Residual Distillation: Towards Portable Deep Neural Networks without Shortcuts »
Guilin Li · Junlei Zhang · Yunhe Wang · Chuanjian Liu · Matthias Tan · Yunfeng Lin · Wei Zhang · Jiashi Feng · Tong Zhang -
2020 Poster: Improving Generalization in Reinforcement Learning with Mixture Regularization »
KAIXIN WANG · Bingyi Kang · Jie Shao · Jiashi Feng -
2020 Poster: Inference Stage Optimization for Cross-scenario 3D Human Pose Estimation »
Jianfeng Zhang · Xuecheng Nie · Jiashi Feng -
2020 Poster: ConvBERT: Improving BERT with Span-based Dynamic Convolution »
Zi-Hang Jiang · Weihao Yu · Daquan Zhou · Yunpeng Chen · Jiashi Feng · Shuicheng Yan -
2020 Spotlight: ConvBERT: Improving BERT with Span-based Dynamic Convolution »
Zi-Hang Jiang · Weihao Yu · Daquan Zhou · Yunpeng Chen · Jiashi Feng · Shuicheng Yan -
2019 Poster: Efficient Meta Learning via Minibatch Proximal Update »
Pan Zhou · Xiaotong Yuan · Huan Xu · Shuicheng Yan · Jiashi Feng -
2019 Spotlight: Efficient Meta Learning via Minibatch Proximal Update »
Pan Zhou · Xiaotong Yuan · Huan Xu · Shuicheng Yan · Jiashi Feng -
2018 Poster: New Insight into Hybrid Stochastic Gradient Descent: Beyond With-Replacement Sampling and Convexity »
Pan Zhou · Xiaotong Yuan · Jiashi Feng -
2018 Poster: Efficient Stochastic Gradient Hard Thresholding »
Pan Zhou · Xiaotong Yuan · Jiashi Feng -
2018 Poster: A^2-Nets: Double Attention Networks »
Yunpeng Chen · Yannis Kalantidis · Jianshu Li · Shuicheng Yan · Jiashi Feng -
2017 Poster: Dual Path Networks »
Yunpeng Chen · Jianan Li · Huaxin Xiao · Xiaojie Jin · Shuicheng Yan · Jiashi Feng -
2017 Spotlight: Dual Path Networks »
Yunpeng Chen · Jianan Li · Huaxin Xiao · Xiaojie Jin · Shuicheng Yan · Jiashi Feng -
2017 Poster: Multimodal Learning and Reasoning for Visual Question Answering »
Ilija Ilievski · Jiashi Feng -
2017 Poster: Predicting Scene Parsing and Motion Dynamics in the Future »
Xiaojie Jin · Huaxin Xiao · Xiaohui Shen · Jimei Yang · Zhe Lin · Yunpeng Chen · Zequn Jie · Jiashi Feng · Shuicheng Yan -
2016 Poster: Tree-Structured Reinforcement Learning for Sequential Object Localization »
Zequn Jie · Xiaodan Liang · Jiashi Feng · Xiaojie Jin · Wen Lu · Shuicheng Yan -
2014 Poster: Robust Logistic Regression and Classification »
Jiashi Feng · Huan Xu · Shie Mannor · Shuicheng Yan -
2014 Poster: Convex Optimization Procedure for Clustering: Theoretical Revisit »
Changbo Zhu · Huan Xu · Chenlei Leng · Shuicheng Yan -
2014 Poster: On a Theory of Nonparametric Pairwise Similarity for Clustering: Connecting Clustering to Classification »
Yingzhen Yang · Feng Liang · Shuicheng Yan · Zhangyang Wang · Thomas S Huang -
2013 Poster: Online Robust PCA via Stochastic Optimization »
Jiashi Feng · Huan Xu · Shuicheng Yan -
2013 Poster: Online PCA for Contaminated Data »
Jiashi Feng · Huan Xu · Shie Mannor · Shuicheng Yan