Timezone: »
Machine learning has become an indispensable tool for a number of tasks ranging from the detection of objects in images to the understanding of natural languages. While these models reach impressively high predictive accuracy, they are often perceived as black-boxes, and it is not clear what information in the input data is used for predicting. In sensitive applications such as medical diagnosis or self-driving cars, where a single incorrect prediction can be very costly, the reliance of the model on the right features must be guaranteed. This indeed lowers the risk that the model behaves erroneously in presence of novel factors of variation in the test data. Furthermore, interpretability is instrumental when applying machine learning to the sciences, as the detailed understanding of the trained model (e.g., what features it uses to capture the complex relations between physical or biological variables) is a prerequisite for building meaningful new scientific hypotheses. Without such understanding and the possibility of verification that the model has learned something meaningful (e.g. obeying the known physical or biological laws), even the best predictor is of no use for scientific purposes. Finally, also from the perspective of a deep learning engineer, being able to visualize what the model has (or has not) learned is valuable as it allows to improve current models by e.g. identifying biases in the data or the training procedure, or by comparing the strengths and weaknesses of different architectures.
Not surprisingly, the problem of visualizing and understanding neural networks has recently received a lot of attention in the community. Various techniques for interpreting deep neural networks have been proposed and several workshops have been organized on related topics. However, the theoretical foundations of the interpretability problem are yet to be investigated and the usefulness of the proposed methods in practice still needs to be demonstrated.
Our NIPS 2017 Workshop “Interpreting, Explaining and Visualizing Deep Learning – Now what?” aims to review recent techniques and establish new theoretical foundations for interpreting and understanding deep learning models. However, it will not stop at the methodological level, but also address the “now what?” question. This strong focus on the applications of interpretable methods in deep learning distinguishes this workshop from previous events as we aim to take the next step by exploring and extending the practical usefulness of Interpreting, Explaining and Visualizing in Deep Learning. Also with this workshop we aim to identify new fields of applications for interpretable deep learning. Since the workshop will host invited speakers from various application domains (computer vision, NLP, neuroscience, medicine), it will provide an opportunity for participants to learn from each other and initiate new interdisciplinary collaborations. The workshop will contain invited research talks, short methods and applications talks, a poster and demonstration session and a panel discussion. A selection of accepted papers together with the invited contributions will be published in an edited book by Springer LNCS in order to provide a representative overview of recent activities in this emerging research field.
Sat 8:15 a.m. - 8:45 a.m.
|
Opening Remarks
(
Talk
)
|
Klaus-Robert Müller 🔗 |
Sat 8:45 a.m. - 9:15 a.m.
|
Invited Talk 1
(
Talk
)
|
Been Kim 🔗 |
Sat 9:15 a.m. - 9:45 a.m.
|
Invited Talk 2
(
Talk
)
|
Dhruv Batra 🔗 |
Sat 9:45 a.m. - 10:30 a.m.
|
Methods 1
(
Track
)
|
Grégoire Montavon · Michael Tsang · Marco Ancona 🔗 |
Sat 10:30 a.m. - 11:00 a.m.
|
Coffee Break (morning)
|
🔗 |
Sat 11:00 a.m. - 11:15 a.m.
|
Methods 2
(
Track
)
|
Pieter-Jan Kindermans 🔗 |
Sat 11:15 a.m. - 11:45 a.m.
|
Invited Talk 3
(
Talk
)
|
Sepp Hochreiter 🔗 |
Sat 11:45 a.m. - 12:15 p.m.
|
Posters 1
(
Posters
)
|
J.P. Lewis · Housam Khalifa Bashier Babiker · Zhongang Qi · Laura Rieger · Ning Xie · Filip Dabek · Koushik Nagasubramanian · Bolei Zhou · Dieuwke Hupkes · CHUN-HAO CHANG · Pamela K Douglas · Enea Ceolini · Derek Doran · Yan Liu · Fuxin Li · Randolph Goebel
|
Sat 12:15 p.m. - 1:15 p.m.
|
Lunch
|
🔗 |
Sat 1:15 p.m. - 1:45 p.m.
|
Posters 2
(
Posters
)
|
🔗 |
Sat 1:45 p.m. - 2:15 p.m.
|
Invited Talk 4
(
Talk
)
|
Anh Nguyen 🔗 |
Sat 2:15 p.m. - 2:45 p.m.
|
Invited Talk 5
(
Talk
)
|
Honglak Lee 🔗 |
Sat 2:45 p.m. - 3:00 p.m.
|
Applications 1
(
Track
)
|
Wojciech Samek 🔗 |
Sat 3:00 p.m. - 3:30 p.m.
|
Coffee Break (afternoon)
|
🔗 |
Sat 3:30 p.m. - 3:45 p.m.
|
Applications 2
(
Track
)
|
Sam Greydanus 🔗 |
Sat 3:45 p.m. - 4:15 p.m.
|
Invited Talk 6
(
Talk
)
|
Rich Caruana 🔗 |
Sat 4:15 p.m. - 4:45 p.m.
|
Invited Talk 7
(
Talk
)
|
Trevor Darrell 🔗 |
Sat 4:45 p.m. - 5:00 p.m.
|
Closing Remarks
(
Panel
)
|
Lars K Hansen 🔗 |
Author Information
Klaus-Robert Müller (TU Berlin)
Andrea Vedaldi (Facebook AI Research and University of Oxford)
Lars K Hansen (Technical University of Denmark)
Wojciech Samek (Fraunhofer Heinrich Hertz Institute)
Grégoire Montavon (TU Berlin)
More from the Same Authors
-
2022 : Direct LiDAR-based object detector training from automated 2D detections »
Robert McCraith · Eldar Insafutdinov · Lukas Neumann · Andrea Vedaldi -
2022 Poster: Unsupervised Multi-Object Segmentation by Predicting Probable Motion Patterns »
Laurynas Karazija · Subhabrata Choudhury · Iro Laina · Christian Rupprecht · Andrea Vedaldi -
2022 Poster: So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems »
Thorben Frank · Oliver Unke · Klaus-Robert Müller -
2021 Poster: Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging »
Ali Hashemi · Yijing Gao · Chang Cai · Sanjay Ghosh · Klaus-Robert Müller · Srikantan Nagarajan · Stefan Haufe -
2021 Poster: SE(3)-equivariant prediction of molecular wavefunctions and electronic densities »
Oliver Unke · Mihail Bogojeski · Michael Gastegger · Mario Geiger · Tess Smidt · Klaus-Robert Müller -
2020 : Panel »
Alan Aspuru-Guzik · Jennifer Listgarten · Klaus-Robert Müller · Nadine Schneider -
2020 : Invited Talk: Klaus Robert-Müller & Kristof Schütt: Machine Learning meets Quantum Chemistry »
Klaus-Robert Müller · Kristof Schütt -
2020 Poster: Quantifying Learnability and Describability of Visual Concepts Emerging in Representation Learning »
Iro Laina · Ruth Fong · Andrea Vedaldi -
2020 Poster: RELATE: Physically Plausible Multi-Object Scene Synthesis Using Structured Latent Spaces »
Sebastien Ehrhardt · Oliver Groth · Aron Monszpart · Martin Engelcke · Ingmar Posner · Niloy Mitra · Andrea Vedaldi -
2019 Poster: Fixing the train-test resolution discrepancy »
Hugo Touvron · Andrea Vedaldi · Matthijs Douze · Herve Jegou -
2019 Demonstration: Learning Machines can Curl - Adaptive Deep Reinforcement Learning enables the robot Curly to win against human players in an icy world »
Dong-Ok Won · Sang-Hoon Lee · Klaus-Robert Müller · Seong-Whan Lee -
2019 Poster: Explanations can be manipulated and geometry is to blame »
Ann-Kathrin Dombrowski · Maximillian Alber · Christopher Anders · Marcel Ackermann · Klaus-Robert Müller · Pan Kessel -
2018 Workshop: Machine Learning for Molecules and Materials »
José Miguel Hernández-Lobato · Klaus-Robert Müller · Brooks Paige · Matt Kusner · Stefan Chmiela · Kristof Schütt -
2018 Poster: Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks »
Jie Hu · Li Shen · Samuel Albanie · Gang Sun · Andrea Vedaldi -
2018 Poster: Modelling and unsupervised learning of symmetric deformable object categories »
James Thewlis · Hakan Bilen · Andrea Vedaldi -
2018 Poster: Unsupervised Learning of Object Landmarks through Conditional Image Generation »
Tomas Jakab · Ankush Gupta · Hakan Bilen · Andrea Vedaldi -
2017 : Closing Remarks »
Lars K Hansen -
2017 : Applications 1 »
Wojciech Samek -
2017 : Methods 1 »
Grégoire Montavon · Michael Tsang · Marco Ancona -
2017 : Opening Remarks »
Klaus-Robert Müller -
2017 Workshop: Machine Learning for Molecules and Materials »
Kristof Schütt · Klaus-Robert Müller · Anatole von Lilienfeld · José Miguel Hernández-Lobato · Klaus-Robert Müller · Alan Aspuru-Guzik · Bharath Ramsundar · Matt Kusner · Brooks Paige · Stefan Chmiela · Alexandre Tkatchenko · Anatole von Lilienfeld · Koji Tsuda -
2017 : Opening remarks »
Klaus-Robert Müller -
2017 Poster: Learning multiple visual domains with residual adapters »
Sylvestre-Alvise Rebuffi · Hakan Bilen · Andrea Vedaldi -
2017 Spotlight: Learning multiple visual domains with residual adapters »
Sylvestre-Alvise Rebuffi · Hakan Bilen · Andrea Vedaldi -
2017 Poster: Unsupervised learning of object frames by dense equivariant image labelling »
James Thewlis · Hakan Bilen · Andrea Vedaldi -
2017 Oral: Unsupervised learning of object frames by dense equivariant image labelling »
James Thewlis · Hakan Bilen · Andrea Vedaldi -
2017 Poster: SchNet: A continuous-filter convolutional neural network for modeling quantum interactions »
Kristof Schütt · Pieter-Jan Kindermans · Huziel Enoc Sauceda Felix · Stefan Chmiela · Alexandre Tkatchenko · Klaus-Robert Müller -
2017 Poster: An Empirical Study on The Properties of Random Bases for Kernel Methods »
Maximilian Alber · Pieter-Jan Kindermans · Kristof Schütt · Klaus-Robert Müller · Fei Sha -
2016 Poster: Learning feed-forward one-shot learners »
Luca Bertinetto · João Henriques · Jack Valmadre · Philip Torr · Andrea Vedaldi -
2016 Poster: Wasserstein Training of Restricted Boltzmann Machines »
Grégoire Montavon · Klaus-Robert Müller · Marco Cuturi -
2016 Poster: A Locally Adaptive Normal Distribution »
Georgios Arvanitidis · Lars K Hansen · Søren Hauberg -
2016 Poster: Integrated perception with recurrent multi-task neural networks »
Hakan Bilen · Andrea Vedaldi -
2015 : Explaining individual deep network predictions and measuring the quality of these explanations »
Grégoire Montavon -
2014 Poster: Bayesian Inference for Structured Spike and Slab Priors »
Michael Riis Andersen · Ole Winther · Lars K Hansen -
2014 Poster: Covariance shrinkage for autocorrelated data »
Daniel Bartz · Klaus-Robert Müller -
2013 Poster: Deep Fisher Networks for Large-Scale Image Classification »
Karen Simonyan · Andrea Vedaldi · Andrew Zisserman -
2013 Poster: Robust Spatial Filtering with Beta Divergence »
Wojciech Samek · Duncan Blythe · Klaus-Robert Müller · Motoaki Kawanabe -
2013 Poster: Generalizing Analytic Shrinkage for Arbitrary Covariance Structures »
Daniel Bartz · Klaus-Robert Müller -
2013 Spotlight: Deep Fisher Networks for Large-Scale Image Classification »
Karen Simonyan · Andrea Vedaldi · Andrew Zisserman -
2013 Spotlight: Robust Spatial Filtering with Beta Divergence »
Wojciech Samek · Duncan Blythe · Klaus-Robert Müller · Motoaki Kawanabe -
2013 Spotlight: Generalizing Analytic Shrinkage for Arbitrary Covariance Structures »
Daniel Bartz · Klaus-Robert Müller -
2012 Poster: Learning Invariant Representations of Molecules for Atomization Energy Prediction »
Grégoire Montavon · Katja Hansen · Siamac Fazli · Matthias Rupp · Franziska Biegler · Andreas Ziehe · Alexandre Tkatchenko · Anatole von Lilienfeld · Klaus-Robert Müller -
2011 Demonstration: Real-time social media analysis with TWIMPACT »
Mikio L Braun · Matthias L Jugel · Klaus-Robert Müller -
2011 Demonstration: A smartphone 3D functional brain scanner »
Carsten Stahlhut · Arkadiusz Stopczynski · Jakob Eg Larsen · Michael K Petersen · Lars K Hansen -
2011 Poster: Pylon Model for Semantic Segmentation »
Victor Lempitsky · Andrea Vedaldi · Andrew Zisserman -
2010 Workshop: Charting Chemical Space: Challenges and Opportunities for AI and Machine Learning »
Pierre Baldi · Klaus-Robert Müller · Gisbert Schneider -
2010 Poster: Simultaneous Object Detection and Ranking with Weak Supervision »
Matthew B Blaschko · Andrea Vedaldi · Andrew Zisserman -
2010 Poster: Infinite Relational Modeling of Functional Connectivity in Resting State fMRI »
Morten Mørup · Kristoffer H Madsen · Anne-Marie Dogonowski · hartwig R Siebner · Lars K Hansen -
2010 Poster: Layer-wise analysis of deep networks with Gaussian kernels »
Grégoire Montavon · Mikio L Braun · Klaus-Robert Müller -
2009 Poster: Efficient and Accurate Lp-Norm Multiple Kernel Learning »
Marius Kloft · Ulf Brefeld · Soeren Sonnenburg · Pavel Laskov · Klaus-Robert Müller · Alexander Zien -
2009 Poster: Subject independent EEG-based BCI decoding »
Siamac Fazli · Cristian Grozea · Márton Danóczy · Benjamin Blankertz · Florin Popescu · Klaus-Robert Müller -
2009 Spotlight: Subject independent EEG-based BCI decoding »
Siamac Fazli · Cristian Grozea · Márton Danóczy · Benjamin Blankertz · Florin Popescu · Klaus-Robert Müller -
2009 Poster: Structured output regression for detection with partial truncation »
Andrea Vedaldi · Andrew Zisserman -
2008 Poster: Playing Pinball with non-invasive BCI »
Michael W Tangermann (ne Schröder) · Matthias Krauledat · Konrad Grzeska · Max Sagebaum · Benjamin Blankertz · Klaus-Robert Müller -
2008 Poster: Estimating vector fields using sparse basis field expansions »
Stefan Haufe · Vadim Nikulin · Andreas Ziehe · Klaus-Robert Müller · Guido Nolte -
2007 Spotlight: Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing »
Benjamin Blankertz · Motoaki Kawanabe · Ryota Tomioka · Friederike Hohlefeld · Vadim Nikulin · Klaus-Robert Müller -
2007 Poster: Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing »
Benjamin Blankertz · Motoaki Kawanabe · Ryota Tomioka · Friederike Hohlefeld · Vadim Nikulin · Klaus-Robert Müller -
2007 Poster: Heterogeneous Component Analysis »
Shigeyuki Oba · Motoaki Kawanabe · Klaus-Robert Müller · Shin Ishii -
2007 Spotlight: Heterogeneous Component Analysis »
Shigeyuki Oba · Motoaki Kawanabe · Klaus-Robert Müller · Shin Ishii -
2006 Workshop: Current Trends in Brain-Computer Interfacing »
Klaus-Robert Müller · José del R. Millán · Matthias Krauledat · Roderick Murray-Smith · Benjamin Blankertz -
2006 Poster: Logistic Regression for Single Trial EEG Classification »
Ryota Tomioka · Kazuyuki Aihara · Klaus-Robert Müller -
2006 Poster: Towards Zero-Training for Brain-Computer Interface Experiments »
Matthias Krauledat · Michael Schröder · Benjamin Blankertz · Klaus-Robert Müller -
2006 Spotlight: Logistic Regression for Single Trial EEG Classification »
Ryota Tomioka · Kazuyuki Aihara · Klaus-Robert Müller -
2006 Poster: Inducing Metric Violations in Human Similarity Judgements »
Julian Laub · Jakob H Macke · Klaus-Robert Müller · Felix A Wichmann -
2006 Poster: Denoising and Dimension Reduction in Feature Space »
Mikio L Braun · Joachim M Buhmann · Klaus-Robert Müller -
2006 Poster: Sparse Kernel Orthonormalized PLS for feature extraction in large data sets »
Jerónimo Arenas-García · Kaare Brandt Petersen · Lars K Hansen -
2006 Poster: A Rate-Distortion Approach to Joint Pattern Alignment »
Andrea Vedaldi -
2006 Demonstration: MIROCKET »
Jerónimo Arenas-García · Lars K Hansen · Tue Lehn-Schioeler · Kaare Brandt Petersen · Jan Larsen