Timezone: »

 
Workshop
Deep Learning: Bridging Theory and Practice
Sanjeev Arora · Maithra Raghu · Russ Salakhutdinov · Ludwig Schmidt · Oriol Vinyals

Sat Dec 09 08:00 AM -- 06:30 PM (PST) @ Hall A
Event URL: https://ludwigschmidt.github.io/nips17-dl-workshop-website/ »

The past five years have seen a huge increase in the capabilities of deep neural networks. Maintaining this rate of progress however, faces some steep challenges, and awaits fundamental insights. As our models become more complex, and venture into areas such as unsupervised learning or reinforcement learning, designing improvements becomes more laborious, and success can be brittle and hard to transfer to new settings.

This workshop seeks to highlight recent works that use theory as well as systematic experiments to isolate the fundamental questions that need to be addressed in deep learning. These have helped flesh out core questions on topics such as generalization, adversarial robustness, large batch training, generative adversarial nets, and optimization, and point towards elements of the theory of deep learning that is expected to emerge in the future.

The workshop aims to enhance this confluence of theory and practice, highlighting influential work with these methods, future open directions, and core fundamental problems. There will be an emphasis on discussion, via panels and round tables, to identify future research directions that are promising and tractable.

Author Information

Sanjeev Arora (Princeton University)
Maithra Raghu (Cornell University and Google Brain)
Russ Salakhutdinov (Carnegie Mellon University)
Ludwig Schmidt (MIT)
Oriol Vinyals (Google DeepMind)

Oriol Vinyals is a Research Scientist at Google. He works in deep learning with the Google Brain team. Oriol holds a Ph.D. in EECS from University of California, Berkeley, and a Masters degree from University of California, San Diego. He is a recipient of the 2011 Microsoft Research PhD Fellowship. He was an early adopter of the new deep learning wave at Berkeley, and in his thesis he focused on non-convex optimization and recurrent neural networks. At Google Brain he continues working on his areas of interest, which include artificial intelligence, with particular emphasis on machine learning, language, and vision.

More from the Same Authors