Timezone: »
Complex machine learning models, such as deep neural networks, have recently achieved outstanding predictive performance in a wide range of applications, including visual object recognition, speech perception, language modeling, and information retrieval. There has since been an explosion of interest in interpreting the representations learned by these models, with profound implications for research into explainable ML, causality, safe AI, social science, automatic scientific discovery, human computer interaction (HCI), crowdsourcing, machine teaching, and AI ethics. This symposium is designed to broadly engage the machine learning community on these topics -- tying together many threads which are deeply related but often considered in isolation.
For example, we may build a complex model to predict crime activity. But by interpreting the learned structure of the model, we can gain new insights into the processes driving crime events, enabling us to develop more effective public policy. Moreover, if we learn that the model is making good predictions by discovering how the geometry of clusters of crime events affect future activity, we can use this knowledge to design even more successful predictive models. Similarly, if we wish to make AI systems deployed on self-driving cars safe, straightforward black-box models will not suffice, as we need methods of understanding their rare but costly mistakes.
The symposium will feature talks and panel discussions. One of the panels will have a moderated debate format where arguments are presented on each side of key topics chosen prior to the symposium, with the opportunity to follow-up each argument with questions. This format will encourage an interactive, lively, and rigorous discussion, working towards the shared goal of making intellectual progress on foundational questions. During the symposium, we will also feature the launch of a new Explainability in Machine Learning Challenge, involving the creation of new benchmarks for motivating the development of interpretable learning algorithms.
Thu 2:00 p.m. - 2:10 p.m.
|
Opening remarks
(
Talk
)
|
🔗 |
Thu 2:10 p.m. - 2:40 p.m.
|
Bernard Scholkopf
(
Invited speaker
)
|
🔗 |
Thu 2:40 p.m. - 3:10 p.m.
|
Kiri Wagstaff
(
Invited speaker
)
|
🔗 |
Thu 3:10 p.m. - 3:40 p.m.
|
Spotlight talks
|
🔗 |
Thu 3:40 p.m. - 4:15 p.m.
|
Posters
(
Poster session
)
|
Shane Barratt · Alex Groce · Qi Yan · Sapan Agarwal · Fabian Offert · Bogdan Kulynych · Housam Khalifa Bashier Babiker · Petar Stojanov · Topi Paananen · Jose Marcio Luna · Gilmer Valdes · Jacqueline A Mauro · Daniel Chen · Baruch Schieber · Randolph Goebel · Jacob Bien
|
Thu 4:15 p.m. - 4:30 p.m.
|
Explainability challenge introduced
(
Challenge
)
|
🔗 |
Thu 4:30 p.m. - 5:00 p.m.
|
Kilian Weinberger
(
Invited speaker
)
|
🔗 |
Thu 5:00 p.m. - 6:00 p.m.
|
Panel discussion with Hanna Wallach, Kiri Wagstaff, Suchi Saria, Bolei Zhou, and Zack Lipton. Moderated by Rich Caruana.
(
Panel
)
|
Bolei Zhou 🔗 |
Thu 6:00 p.m. - 7:00 p.m.
|
Dinner
|
🔗 |
Thu 7:00 p.m. - 7:30 p.m.
|
Viktoriya Krakovna (DeepMind)
(
Invited speaker
)
|
🔗 |
Thu 7:30 p.m. - 8:00 p.m.
|
Jenn Wortman Vaughan (Microsoft)
(
Invited speaker
)
|
🔗 |
Thu 8:00 p.m. - 8:30 p.m.
|
Jerry Zhu (UW-Madison)
(
Invited speaker
)
|
🔗 |
Thu 8:30 p.m. - 9:30 p.m.
|
Debate with Yann LeCunn, Patrice Simard, and Rich Caruana.
(
Panel
)
|
🔗 |
Author Information
Andrew Wilson (Cornell University)

I am a professor of machine learning at New York University.
Jason Yosinski (Uber AI Labs; Recursion)
Dr. Jason Yosinski is a machine learning researcher, was a founding member of Uber AI Labs, and is scientific adviser to Recursion Pharmaceuticals and several other companies. His work focuses on building more capable and more understandable AI. As scientists and engineers build increasingly powerful AI systems, the abilities of these systems increase faster than does our understanding of them, motivating much of his work on AI Neuroscience: an emerging field of study that investigates fundamental properties and behaviors of AI systems. Dr. Yosinski completed his PhD as a NASA Space Technology Research Fellow working at the Cornell Creative Machines Lab, the University of Montreal, Caltech/NASA Jet Propulsion Laboratory, and Google DeepMind. His work on AI has been featured on NPR, Fast Company, the Economist, TEDx, XKCD, and on the BBC. Prior to his academic career, Jason cofounded two web technology companies and started a program in the Los Angeles school district that teaches students algebra via hands-on robotics. In his free time, Jason enjoys cooking, sailing, motorcycling, reading, paragliding, and sometimes pretending he's an artist.
Patrice Simard (Microsoft Research)
Rich Caruana (Microsoft)
William Herlands (Carnegie Mellon University)
More from the Same Authors
-
2021 Spotlight: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 : GAM Changer: Editing Generalized Additive Models with Interactive Visualization »
Zijie Jay Wang · Harsha Nori · Duen Horng Chau · Jennifer Wortman Vaughan · Rich Caruana -
2021 : Robust Reinforcement Learning for Shifting Dynamics During Deployment »
Samuel Stanton · Rasool Fakoor · Jonas Mueller · Andrew Gordon Wilson · Alexander Smola -
2022 : Transfer Learning with Deep Tabular Models »
Roman Levin · Valeriia Cherepanova · Avi Schwarzschild · Arpit Bansal · C. Bayan Bruss · Tom Goldstein · Andrew Wilson · Micah Goldblum -
2022 : On Representation Learning Under Class Imbalance »
Ravid Shwartz-Ziv · Micah Goldblum · Yucen Li · C. Bayan Bruss · Andrew Gordon Wilson -
2022 : Andrew Gordon Wilson: When Bayesian Orthodoxy Can Go Wrong: Model Selection and Out-of-Distribution Generalization »
Andrew Gordon Wilson -
2022 : Andrew Gordon Wilson: When Bayesian Orthodoxy Can Go Wrong: Model Selection and Out-of-Distribution Generalization »
Andrew Gordon Wilson -
2022 : Transfer Learning with Deep Tabular Models »
Roman Levin · Valeriia Cherepanova · Avi Schwarzschild · Arpit Bansal · C. Bayan Bruss · Tom Goldstein · Andrew Wilson · Micah Goldblum -
2022 Poster: Chroma-VAE: Mitigating Shortcut Learning with Generative Classifiers »
Wanqian Yang · Polina Kirichenko · Micah Goldblum · Andrew Wilson -
2022 Poster: On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification »
Sanyam Kapoor · Wesley Maddox · Pavel Izmailov · Andrew Wilson -
2022 Poster: Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors »
Ravid Shwartz-Ziv · Micah Goldblum · Hossein Souri · Sanyam Kapoor · Chen Zhu · Yann LeCun · Andrew Wilson -
2022 Poster: On Feature Learning in the Presence of Spurious Correlations »
Pavel Izmailov · Polina Kirichenko · Nate Gruver · Andrew Wilson -
2022 Poster: PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization »
Sanae Lotfi · Marc Finzi · Sanyam Kapoor · Andres Potapczynski · Micah Goldblum · Andrew Wilson -
2021 : Invited talk (ML) - Rich Caruana »
Rich Caruana -
2021 Workshop: Bayesian Deep Learning »
Yarin Gal · Yingzhen Li · Sebastian Farquhar · Christos Louizos · Eric Nalisnick · Andrew Gordon Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2021 : Evaluating Approximate Inference in Bayesian Deep Learning + Q&A »
Andrew Gordon Wilson · Pavel Izmailov · Matthew Hoffman · Yarin Gal · Yingzhen Li · Melanie F. Pradier · Sharad Vikram · Andrew Foong · Sanae Lotfi · Sebastian Farquhar -
2021 Poster: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 Poster: Residual Pathway Priors for Soft Equivariance Constraints »
Marc Finzi · Gregory Benton · Andrew Wilson -
2021 Poster: Does Knowledge Distillation Really Work? »
Samuel Stanton · Pavel Izmailov · Polina Kirichenko · Alexander Alemi · Andrew Wilson -
2021 Poster: Dangers of Bayesian Model Averaging under Covariate Shift »
Pavel Izmailov · Patrick Nicholson · Sanae Lotfi · Andrew Wilson -
2021 Poster: Conditioning Sparse Variational Gaussian Processes for Online Decision-making »
Wesley Maddox · Samuel Stanton · Andrew Wilson -
2021 Poster: Bayesian Optimization with High-Dimensional Outputs »
Wesley Maddox · Maximilian Balandat · Andrew Wilson · Eytan Bakshy -
2020 Poster: Bayesian Deep Learning and a Probabilistic Perspective of Generalization »
Andrew Wilson · Pavel Izmailov -
2020 Poster: Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints »
Marc Finzi · Ke Alexander Wang · Andrew Wilson -
2020 Spotlight: Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints »
Marc Finzi · Ke Alexander Wang · Andrew Wilson -
2020 Poster: Supermasks in Superposition »
Mitchell Wortsman · Vivek Ramanujan · Rosanne Liu · Aniruddha Kembhavi · Mohammad Rastegari · Jason Yosinski · Ali Farhadi -
2020 Poster: BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization »
Maximilian Balandat · Brian Karrer · Daniel Jiang · Samuel Daulton · Ben Letham · Andrew Wilson · Eytan Bakshy -
2020 Poster: Learning Invariances in Neural Networks from Training Data »
Gregory Benton · Marc Finzi · Pavel Izmailov · Andrew Wilson -
2020 Poster: Improving GAN Training with Probability Ratio Clipping and Sample Reweighting »
Yue Wu · Pan Zhou · Andrew Wilson · Eric Xing · Zhiting Hu -
2020 Poster: Why Normalizing Flows Fail to Detect Out-of-Distribution Data »
Polina Kirichenko · Pavel Izmailov · Andrew Wilson -
2019 : Panel - The Role of Communication at Large: Aparna Lakshmiratan, Jason Yosinski, Been Kim, Surya Ganguli, Finale Doshi-Velez »
Aparna Lakshmiratan · Finale Doshi-Velez · Surya Ganguli · Zachary Lipton · Michela Paganini · Anima Anandkumar · Jason Yosinski -
2019 Workshop: Learning with Rich Experience: Integration of Learning Paradigms »
Zhiting Hu · Andrew Wilson · Chelsea Finn · Lisa Lee · Taylor Berg-Kirkpatrick · Ruslan Salakhutdinov · Eric Xing -
2019 Poster: Hamiltonian Neural Networks »
Sam Greydanus · Misko Dzamba · Jason Yosinski -
2019 Poster: Efficient Forward Architecture Search »
Hanzhang Hu · John Langford · Rich Caruana · Saurajit Mukherjee · Eric Horvitz · Debadeepta Dey -
2019 Poster: Exact Gaussian Processes on a Million Data Points »
Ke Alexander Wang · Geoff Pleiss · Jacob Gardner · Stephen Tyree · Kilian Weinberger · Andrew Gordon Wilson -
2019 Poster: Function-Space Distributions over Kernels »
Gregory Benton · Wesley Maddox · Jayson Salkey · Julio Albinati · Andrew Gordon Wilson -
2019 Poster: LCA: Loss Change Allocation for Neural Network Training »
Janice Lan · Rosanne Liu · Hattie Zhou · Jason Yosinski -
2019 Poster: Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask »
Hattie Zhou · Janice Lan · Rosanne Liu · Jason Yosinski -
2019 Poster: A Simple Baseline for Bayesian Uncertainty in Deep Learning »
Wesley Maddox · Pavel Izmailov · Timur Garipov · Dmitry Vetrov · Andrew Gordon Wilson -
2018 : Panel Discussion »
Rich Caruana · Mike Schuster · Ralf Schlüter · Hynek Hermansky · Renato De Mori · Samy Bengio · Michiel Bacchiani · Jason Eisner -
2018 : Jason Yosinski, "Good and bad assumptions in model design and interpretability" »
Jason Yosinski -
2018 : Rich Caruana, "Friends Don’t Let Friends Deploy Black-Box Models: The Importance of Intelligibility in Machine Learning" »
Rich Caruana -
2018 Workshop: Machine Learning for the Developing World (ML4D): Achieving sustainable impact »
William Herlands · Maria De-Arteaga · Amanda Coston -
2018 : Panel on research process »
Zachary Lipton · Charles Sutton · Finale Doshi-Velez · Hanna Wallach · Suchi Saria · Rich Caruana · Thomas Rainforth -
2018 : Rich Caruna - Justice May Be Blind But It Shouldn’t Be Opaque: The Risk of Using Black-Box Models in Healthcare & Criminal Justice »
Rich Caruana -
2018 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2018 Workshop: Critiquing and Correcting Trends in Machine Learning »
Thomas Rainforth · Matt Kusner · Benjamin Bloem-Reddy · Brooks Paige · Rich Caruana · Yee Whye Teh -
2018 Poster: Scaling Gaussian Process Regression with Derivatives »
David Eriksson · Kun Dong · Eric Lee · David Bindel · Andrew Wilson -
2018 Poster: GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration »
Jacob Gardner · Geoff Pleiss · Kilian Weinberger · David Bindel · Andrew Wilson -
2018 Spotlight: GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration »
Jacob Gardner · Geoff Pleiss · Kilian Weinberger · David Bindel · Andrew Wilson -
2018 Poster: Faster Neural Networks Straight from JPEG »
Lionel Gueguen · Alex Sergeev · Ben Kadlec · Rosanne Liu · Jason Yosinski -
2018 Poster: Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs »
Timur Garipov · Pavel Izmailov · Dmitrii Podoprikhin · Dmitry Vetrov · Andrew Wilson -
2018 Spotlight: Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs »
Timur Garipov · Pavel Izmailov · Dmitrii Podoprikhin · Dmitry Vetrov · Andrew Wilson -
2018 Poster: An intriguing failing of convolutional neural networks and the CoordConv solution »
Rosanne Liu · Joel Lehman · Piero Molino · Felipe Petroski Such · Eric Frank · Alex Sergeev · Jason Yosinski -
2017 : Invited Talk 6 »
Rich Caruana -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2017 Workshop: Machine Learning for the Developing World »
William Herlands · Maria De-Arteaga -
2017 Poster: Bayesian GAN »
Yunus Saatci · Andrew Wilson -
2017 Spotlight: Bayesian GANs »
Yunus Saatci · Andrew Wilson -
2017 Poster: Bayesian Optimization with Gradients »
Jian Wu · Matthias Poloczek · Andrew Wilson · Peter Frazier -
2017 Poster: Scalable Log Determinants for Gaussian Process Kernel Learning »
Kun Dong · David Eriksson · Hannes Nickisch · David Bindel · Andrew Wilson -
2017 Oral: Bayesian Optimization with Gradients »
Jian Wu · Matthias Poloczek · Andrew Wilson · Peter Frazier -
2017 Poster: Scalable Levy Process Priors for Spectral Kernel Learning »
Phillip Jang · Andrew Loeb · Matthew Davidow · Andrew Wilson -
2017 Poster: SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability »
Maithra Raghu · Justin Gilmer · Jason Yosinski · Jascha Sohl-Dickstein -
2016 Workshop: Interpretable Machine Learning for Complex Systems »
Andrew Wilson · Been Kim · William Herlands -
2016 Demonstration: Adventures with Deep Generator Networks »
Jason Yosinski · Anh Nguyen · Jeff Clune · Douglas K Bemis -
2016 Poster: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks »
Anh Nguyen · Alexey Dosovitskiy · Jason Yosinski · Thomas Brox · Jeff Clune -
2016 Poster: Stochastic Variational Deep Kernel Learning »
Andrew Wilson · Zhiting Hu · Russ Salakhutdinov · Eric Xing -
2015 : The risk of deploying unintelligible models in healthcare »
Rich Caruana -
2015 Workshop: Nonparametric Methods for Large Scale Representation Learning »
Andrew G Wilson · Alexander Smola · Eric Xing -
2015 Poster: The Human Kernel »
Andrew Wilson · Christoph Dann · Chris Lucas · Eric Xing -
2015 Spotlight: The Human Kernel »
Andrew Wilson · Christoph Dann · Chris Lucas · Eric Xing -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Poster: How transferable are features in deep neural networks? »
Jason Yosinski · Jeff Clune · Yoshua Bengio · Hod Lipson -
2014 Poster: Do Deep Nets Really Need to be Deep? »
Jimmy Ba · Rich Caruana -
2014 Demonstration: ICE: Interactive Classification and Entity Extraction »
Patrice Simard · Max Chickering · Aparna Lakshmiratan · Carlos Garcia Jurado Suarez · Saleema Amershi · Johan Verwey · Jina Suh -
2014 Poster: Fast Kernel Learning for Multidimensional Pattern Extrapolation »
Andrew Wilson · Elad Gilboa · John P Cunningham · Arye Nehorai -
2014 Demonstration: Playing with Convnets »
Jason Yosinski · Hod Lipson -
2014 Oral: How transferable are features in deep neural networks? »
Jason Yosinski · Jeff Clune · Yoshua Bengio · Hod Lipson -
2013 Poster: Using multiple samples to learn mixture models »
Jason D Lee · Ran Gilad-Bachrach · Rich Caruana -
2013 Spotlight: Using multiple samples to learn mixture models »
Jason D Lee · Ran Gilad-Bachrach · Rich Caruana -
2010 Session: Spotlights Session 7 »
Rich Caruana -
2010 Session: Oral Session 8 »
Rich Caruana -
2010 Spotlight: Copula Processes »
Andrew Wilson · Zoubin Ghahramani -
2010 Poster: Copula Processes »
Andrew Wilson · Zoubin Ghahramani