Timezone: »
This tutorial will provide a gentle introduction into the foundations of statistical relational artificial intelligence, and will realize this by introducing the foundations of logic, of probability, of learning, and their respective combinations. Both predicate logic and probability theory extend propositional logic, one by adding relations, individuals and quantified variables, the other by allowing for measures over possible worlds and conditional queries. While logical and probabilistic approaches have often been studied and used independently within artificial intelligence, they are not in conflict with each other but they are synergistic. This explains why there has been a considerable body of research in combining first-order logic and probability over the last 25 years, evolving into what has come to be called Statistical Relational Artificial Intelligence (StarAI).
Relational probabilistic models — we use this term in the broad sense, meaning any models that combine relations and probabilities — form the basis of StarAI, and can be seen as combinations of probability and predicate calculus that allow for individuals and relations as well as probabilities. In building on top of relational models, StarAI goes far beyond reasoning, optimization, learning and acting optimally in terms of a fixed number of features or variables, as it is typically studied in machine learning, constraint satisfaction, probabilistic reasoning, and other areas of AI. Since StarAI draws upon ideas developed within many different fields, however, it can also be quite challenging for newcomers to get started and our tutorial precisely aims to provide this background.
Author Information
Luc De Raedt (KU Leuven)
David Poole (University of British Columbia)
Kristian Kersting (TU Dortmund University)
Sriraam Natarajan (Indiana University)
More from the Same Authors
-
2021 : Deep RePReL--Combining Planning and Deep RL for acting in relational domains »
Harsha Kokel · Arjun Manoharan · Sriraam Natarajan · Balaraman Ravindran · Prasad Tadepalli -
2021 Poster: Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models »
Matej Zečević · Devendra Dhami · Athresh Karanam · Sriraam Natarajan · Kristian Kersting -
2019 : Lunch break & Poster session »
Breandan Considine · Michael Innes · Du Phan · Dougal Maclaurin · Robin Manhaeve · Alexey Radul · Shashi Gowda · Ekansh Sharma · Eli Sennesh · Maxim Kochurov · Gordon Plotkin · Thomas Wiecki · Navjot Kukreja · Chung-chieh Shan · Matthew Johnson · Dan Belov · Neeraj Pradhan · Wannes Meert · Angelika Kimmig · Luc De Raedt · Brian Patton · Matthew Hoffman · Rif A. Saurous · Daniel Roy · Eli Bingham · Martin Jankowiak · Colin Carroll · Junpeng Lao · Liam Paull · Martin Abadi · Angel Rojas Jimenez · JP Chen -
2018 Poster: DeepProbLog: Neural Probabilistic Logic Programming »
Robin Manhaeve · Sebastijan Dumancic · Angelika Kimmig · Thomas Demeester · Luc De Raedt -
2018 Poster: SimplE Embedding for Link Prediction in Knowledge Graphs »
Seyed Mehran Kazemi · David Poole -
2018 Spotlight: DeepProbLog: Neural Probabilistic Logic Programming »
Robin Manhaeve · Sebastijan Dumancic · Angelika Kimmig · Thomas Demeester · Luc De Raedt -
2016 Poster: New Liftable Classes for First-Order Probabilistic Inference »
Seyed Mehran Kazemi · Angelika Kimmig · Guy Van den Broeck · David Poole