Timezone: »
In the past years, deep learning methods have achieved unprecedented performance on a broad range of problems in various fields from computer vision to speech recognition. So far research has mainly focused on developing deep learning methods for Euclidean-structured data, while many important applications have to deal with non-Euclidean structured data, such as graphs and manifolds. Such geometric data are becoming increasingly important in computer graphics and 3D vision, sensor networks, drug design, biomedicine, recommendation systems, and web applications. The adoption of deep learning in these fields has been lagging behind until recently, primarily since the non-Euclidean nature of objects dealt with makes the very definition of basic operations used in deep networks rather elusive.
The purpose of the proposed tutorial is to introduce the emerging field of geometric deep learning on graphs and manifolds, overview existing solutions and applications for this class of problems, as well as key difficulties and future research directions.
Author Information
Michael Bronstein (USI Lugano / Tel Aviv University / Intel)
Michael Bronstein is an associate professor of Informatics at USI Lugano in Switzerland, associate professor of Applied Mathematics at Tel Aviv University in Israel, and a Principal Engineer at the Intel Perceptual Computing. Michael got his Ph.D. with distinction in Computer Science from the Technion in 2007. He has held visiting appointments at Stanford, Harvard, and MIT. He is a Senior Member of the IEEE, alumnus of the Technion Excellence Program and the Academy of Achievement, ACM Distinguished Speaker, and a member of the Young Academy of Europe. His research appeared in the international media such as CNN and was recognized by numerous prestigious awards, including several best paper awards, three ERC grants (Starting Grant 2012, Proof of Concept Grant 2016, and Consolidator Grant 2016), Google Faculty Research Award (2016), Radcliffe Fellowship from the Institute for Advanced Study at Harvard University (2017), and Rudolf Diesel Industrial Fellowship from TU Munich (2017). In 2014, he was invited as a Young Scientist to the World Economic Forum, an honor bestowed on forty world's leading scientists under the age of forty. Michael is the author of over 100 papers in top scientific journals and conferences, and inventor of over 25 granted patents. He has chaired over a dozen of conferences and workshops in his field, and has served as area chair at ECCV 2016 and ICCV 2017 and as associate editor of the Computer Vision and Image Understanding journal. Besides academic work, Michael is actively involved in the industry. He has co-founded and served in leading technical and management positions at several startup companies, including Invision, an Israeli startup developing 3D sensing technology acquired by Intel in 2012.
Joan Bruna (NYU)
arthur szlam (Facebook)
Xavier Bresson (NTU)
Yann LeCun (Facebook AI Research and New York University)
Yann LeCun is Director of AI Research at Facebook, and Silver Professor of Data Science, Computer Science, Neural Science, and Electrical Engineering at New York University. He received the Electrical Engineer Diploma from ESIEE, Paris in 1983, and a PhD in Computer Science from Université Pierre et Marie Curie (Paris) in 1987. After a postdoc at the University of Toronto, he joined AT&T Bell Laboratories in Holmdel, NJ in 1988. He became head of the Image Processing Research Department at AT&T Labs-Research in 1996, and joined NYU as a professor in 2003, after a brief period as a Fellow of the NEC Research Institute in Princeton. From 2012 to 2014 he directed NYU's initiative in data science and became the founding director of the NYU Center for Data Science. He was named Director of AI Research at Facebook in late 2013 and retains a part-time position on the NYU faculty. His current interests include AI, machine learning, computer perception, mobile robotics, and computational neuroscience. He has published over 180 technical papers and book chapters on these topics as well as on neural networks, handwriting recognition, image processing and compression, and on dedicated circuits for computer perception.
More from the Same Authors
-
2021 : An Extensible Benchmark Suite for Learning to Simulate Physical Systems »
Karl Otness · Arvi Gjoka · Joan Bruna · Daniele Panozzo · Benjamin Peherstorfer · Teseo Schneider · Denis Zorin -
2021 Spotlight: Hash Layers For Large Sparse Models »
Stephen Roller · Sainbayar Sukhbaatar · arthur szlam · Jason Weston -
2021 Spotlight: Offline RL Without Off-Policy Evaluation »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2021 : Quantile Filtered Imitation Learning »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2022 : Learning to Reason and Memorize with Self-Questioning »
Jack Lanchantin · Shubham Toshniwal · Jason E Weston · arthur szlam · Sainbayar Sukhbaatar -
2022 : Fifteen-minute Competition Overview Video »
Maartje Anne ter Hoeve · Mikhail Burtsev · Zoya Volovikova · Ziming Li · Yuxuan Sun · Shrestha Mohanty · Negar Arabzadeh · Mohammad Aliannejadi · Milagro Teruel · Marc-Alexandre Côté · Kavya Srinet · arthur szlam · Artem Zholus · Alexey Skrynnik · Aleksandr Panov · Ahmed Awadallah · Julia Kiseleva -
2023 Poster: A Neural Collapse Perspective on Feature Evolution in Graph Neural Networks »
Vignesh Kothapalli · Tom Tirer · Joan Bruna -
2023 Poster: Inverse Dynamics Pretraining Learns Good Representations for Multitask Imitation »
David Brandfonbrener · Ofir Nachum · Joan Bruna -
2023 Poster: Self-Supervised Learning with Lie Symmetries for Partial Differential Equations »
Grégoire Mialon · Quentin Garrido · Hannah Lawrence · Danyal Rehman · Bobak Kiani · Yann LeCun -
2023 Poster: Learning to Reason and Memorize with Self-Notes »
Jack Lanchantin · Shubham Toshniwal · Jason E Weston · arthur szlam · Sainbayar Sukhbaatar -
2023 Poster: Reverse Engineering Self-Supervised Learning »
Ido Ben-Shaul · Ravid Shwartz-Ziv · Tomer Galanti · Shai Dekel · Yann LeCun -
2023 Poster: An Information Theory Perspective on Variance-Invariance-Covariance Regularization »
Ravid Shwartz-Ziv · Randall Balestriero · Kenji Kawaguchi · Tim G. J. Rudner · Yann LeCun -
2023 Poster: On Single-Index Models beyond Gaussian Data »
Aaron Zweig · Loucas PILLAUD-VIVIEN · Joan Bruna -
2022 Competition: IGLU: Interactive Grounded Language Understanding in a Collaborative Environment »
Julia Kiseleva · Alexey Skrynnik · Artem Zholus · Shrestha Mohanty · Negar Arabzadeh · Marc-Alexandre Côté · Mohammad Aliannejadi · Milagro Teruel · Ziming Li · Mikhail Burtsev · Maartje Anne ter Hoeve · Zoya Volovikova · Aleksandr Panov · Yuxuan Sun · arthur szlam · Ahmed Awadallah · Kavya Srinet -
2022 : Learning to Reason and Memorize with Self-Questioning »
Jack Lanchantin · Shubham Toshniwal · Jason E Weston · arthur szlam · Sainbayar Sukhbaatar -
2022 Poster: The Effects of Regularization and Data Augmentation are Class Dependent »
Randall Balestriero · Leon Bottou · Yann LeCun -
2022 Poster: Exponential Separations in Symmetric Neural Networks »
Aaron Zweig · Joan Bruna -
2022 Poster: VICRegL: Self-Supervised Learning of Local Visual Features »
Adrien Bardes · Jean Ponce · Yann LeCun -
2022 Poster: When does return-conditioned supervised learning work for offline reinforcement learning? »
David Brandfonbrener · Alberto Bietti · Jacob Buckman · Romain Laroche · Joan Bruna -
2022 Poster: Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone »
Zi-Yi Dou · Aishwarya Kamath · Zhe Gan · Pengchuan Zhang · Jianfeng Wang · Linjie Li · Zicheng Liu · Ce Liu · Yann LeCun · Nanyun Peng · Jianfeng Gao · Lijuan Wang -
2022 Poster: Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors »
Ravid Shwartz-Ziv · Micah Goldblum · Hossein Souri · Sanyam Kapoor · Chen Zhu · Yann LeCun · Andrew Wilson -
2022 Poster: A Data-Augmentation Is Worth A Thousand Samples: Analytical Moments And Sampling-Free Training »
Randall Balestriero · Ishan Misra · Yann LeCun -
2022 Poster: projUNN: efficient method for training deep networks with unitary matrices »
Bobak Kiani · Randall Balestriero · Yann LeCun · Seth Lloyd -
2022 Poster: On Non-Linear operators for Geometric Deep Learning »
Grégoire Sergeant-Perthuis · Jakob Maier · Joan Bruna · Edouard Oyallon -
2022 Poster: Contrastive and Non-Contrastive Self-Supervised Learning Recover Global and Local Spectral Embedding Methods »
Randall Balestriero · Yann LeCun -
2022 Poster: Learning single-index models with shallow neural networks »
Alberto Bietti · Joan Bruna · Clayton Sanford · Min Jae Song -
2021 Poster: Hash Layers For Large Sparse Models »
Stephen Roller · Sainbayar Sukhbaatar · arthur szlam · Jason Weston -
2021 : IGLU: Interactive Grounded Language Understanding in a Collaborative Environment + Q&A »
Julia Kiseleva · Ziming Li · Mohammad Aliannejadi · Maartje Anne ter Hoeve · Mikhail Burtsev · Alexey Skrynnik · Artem Zholus · Aleksandr Panov · Katja Hofmann · Kavya Srinet · arthur szlam · Michel Galley · Ahmed Awadallah -
2021 Poster: On the Sample Complexity of Learning under Geometric Stability »
Alberto Bietti · Luca Venturi · Joan Bruna -
2021 Poster: On the Cryptographic Hardness of Learning Single Periodic Neurons »
Min Jae Song · Ilias Zadik · Joan Bruna -
2021 Poster: Offline RL Without Off-Policy Evaluation »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 : QA: Yann LeCun »
Yann LeCun -
2020 : Invited Talk: Yann LeCun »
Yann LeCun -
2020 Poster: A mean-field analysis of two-player zero-sum games »
Carles Domingo-Enrich · Samy Jelassi · Arthur Mensch · Grant Rotskoff · Joan Bruna -
2020 Poster: Can Graph Neural Networks Count Substructures? »
Zhengdao Chen · Lei Chen · Soledad Villar · Joan Bruna -
2020 Session: Orals & Spotlights Track 26: Graph/Relational/Theory »
Joan Bruna · Cassio de Campos -
2020 Poster: IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method »
Yossi Arjevani · Joan Bruna · Bugra Can · Mert Gurbuzbalaban · Stefanie Jegelka · Hongzhou Lin -
2020 Spotlight: IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method »
Yossi Arjevani · Joan Bruna · Bugra Can · Mert Gurbuzbalaban · Stefanie Jegelka · Hongzhou Lin -
2020 Poster: A Dynamical Central Limit Theorem for Shallow Neural Networks »
Zhengdao Chen · Grant Rotskoff · Joan Bruna · Eric Vanden-Eijnden -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 : Surya Ganguli, Yasaman Bahri, Florent Krzakala moderated by Lenka Zdeborova »
Florent Krzakala · Yasaman Bahri · Surya Ganguli · Lenka Zdeborová · Adji Bousso Dieng · Joan Bruna -
2019 : Poster Spotlight 1 »
David Brandfonbrener · Joan Bruna · Tom Zahavy · Haim Kaplan · Yishay Mansour · Nikos Karampatziakis · John Langford · Paul Mineiro · Donghwan Lee · Niao He -
2019 : Opening Remarks »
Reinhard Heckel · Paul Hand · Alex Dimakis · Joan Bruna · Deanna Needell · Richard Baraniuk -
2019 Workshop: Solving inverse problems with deep networks: New architectures, theoretical foundations, and applications »
Reinhard Heckel · Paul Hand · Richard Baraniuk · Joan Bruna · Alex Dimakis · Deanna Needell -
2019 : TBD »
Yann LeCun -
2019 Poster: Gradient Dynamics of Shallow Univariate ReLU Networks »
Francis Williams · Matthew Trager · Daniele Panozzo · Claudio Silva · Denis Zorin · Joan Bruna -
2019 Poster: On the Expressive Power of Deep Polynomial Neural Networks »
Joe Kileel · Matthew Trager · Joan Bruna -
2019 Poster: Finding the Needle in the Haystack with Convolutions: on the benefits of architectural bias »
Stéphane d'Ascoli · Levent Sagun · Giulio Biroli · Joan Bruna -
2019 Poster: On the equivalence between graph isomorphism testing and function approximation with GNNs »
Zhengdao Chen · Soledad Villar · Lei Chen · Joan Bruna -
2019 Poster: Stability of Graph Scattering Transforms »
Fernando Gama · Alejandro Ribeiro · Joan Bruna -
2018 : Invited Talk 3 »
Joan Bruna -
2018 : Joan Bruna »
Joan Bruna -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 Poster: Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks »
Federico Monti · Michael Bronstein · Xavier Bresson -
2016 : Discussion panel »
Ian Goodfellow · Soumith Chintala · Arthur Gretton · Sebastian Nowozin · Aaron Courville · Yann LeCun · Emily Denton -
2016 : Energy-Based Adversarial Training and Video Prediction »
Yann LeCun -
2016 Symposium: Deep Learning Symposium »
Yoshua Bengio · Yann LeCun · Navdeep Jaitly · Roger Grosse -
2016 Poster: The Product Cut »
Thomas Laurent · James von Brecht · Xavier Bresson · arthur szlam -
2016 Poster: Learning Multiagent Communication with Backpropagation »
Sainbayar Sukhbaatar · arthur szlam · Rob Fergus -
2016 Poster: Learning shape correspondence with anisotropic convolutional neural networks »
Davide Boscaini · Jonathan Masci · Emanuele Rodolà · Michael Bronstein -
2015 Poster: Learning to Linearize Under Uncertainty »
Ross Goroshin · Michael Mathieu · Yann LeCun -
2015 Poster: End-To-End Memory Networks »
Sainbayar Sukhbaatar · arthur szlam · Jason Weston · Rob Fergus -
2015 Oral: End-To-End Memory Networks »
Sainbayar Sukhbaatar · arthur szlam · Jason Weston · Rob Fergus -
2015 Poster: Character-level Convolutional Networks for Text Classification »
Xiang Zhang · Junbo (Jake) Zhao · Yann LeCun -
2015 Poster: Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks »
Emily Denton · Soumith Chintala · arthur szlam · Rob Fergus -
2015 Poster: Deep learning with Elastic Averaging SGD »
Sixin Zhang · Anna Choromanska · Yann LeCun -
2015 Spotlight: Deep learning with Elastic Averaging SGD »
Sixin Zhang · Anna Choromanska · Yann LeCun -
2015 Tutorial: Deep Learning »
Geoffrey E Hinton · Yoshua Bengio · Yann LeCun -
2014 Poster: Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation »
Emily Denton · Wojciech Zaremba · Joan Bruna · Yann LeCun · Rob Fergus