Timezone: »
On the face of it, most real-world world tasks are hopelessly complex from the point of view of reinforcement learning mechanisms. In particular, due to the ”curse of dimensionality”, even the simple task of crossing the street should, in principle, take thousands of trials to learn to master. But we are better than that.. How does our brain do it? In this talk, I will argue that the hardest part of learning is not assigning values or learning policies, but rather deciding on the boundaries of similarity between experiences, which define the ”states” that we learn about. I will show behavioral evidence that humans and animals are constantly engaged in this representation learning process, and suggest that in a not too far future, we may be able to read out these representations from the brain, and therefore find out how the brain has mastered this complex problem. I will formalize the problem of learning a state representation in terms of Bayesian inference with infinite capacity models, and suggest that an understanding of the computational problem of representation learning can lead to insights into the machine learning problem of transfer learning, and psychological/neuroscientific questions about the interplay between memory and learning.
Author Information
Yael Niv (Princeton University)
Yael Niv received her MA in psychobiology from Tel Aviv University and her PhD from the Hebrew University in Jerusalem, having conducted a major part of her thesis research at the Gatsby Computational Neuroscience Unit in UCL. After a short postdoc at Princeton she became faculty at the Psychology Department and the Princeton Neuroscience Institute. Her lab's research focuses on the neural and computational processes underlying reinforcement learning and decision-making in humans and animals, with a particular focus on representation learning. She recently co-founded the Rutgers-Princeton Center for Computational Cognitive Neuropsychiatry, and is currently taking the research in her lab in the direction of computational psychiatry.
More from the Same Authors
-
2020 : Invited Talk #7 QnA - Yael Niv »
Yael Niv · Doina Precup · Raymond Chua · Feryal Behbahani -
2020 : Invited Talk #7 Yael Niv - Latent causes, prediction errors and the organization of memory »
Yael Niv -
2020 : Panel Discussions »
Grace Lindsay · George Konidaris · Shakir Mohamed · Kimberly Stachenfeld · Peter Dayan · Yael Niv · Doina Precup · Catherine Hartley · Ishita Dasgupta -
2020 : Contributed Talk #1: Learning multi-dimensional rules with probabilistic feedback via value-based serial hypothesis testing »
Mingyu Song · Ming Bo Cai · Yael Niv -
2016 Poster: A Bayesian method for reducing bias in neural representational similarity analysis »
Mingbo Cai · Nicolas W Schuck · Jonathan Pillow · Yael Niv -
2008 Poster: Learning to Use Working Memory in Partially Observable Environments through Dopaminergic Reinforcement »
Michael Todd · Yael Niv · Jonathan D Cohen -
2008 Oral: Learning to Use Working Memory in Partially Observable Environments through Dopaminergic Reinforcement »
Michael Todd · Yael Niv · Jonathan D Cohen -
2007 Workshop: Hierarchical Organization of Behavior: Computational, Psychological and Neural Perspectives (Part 2) »
Yael Niv · Matthew Botvinick · Andrew G Barto -
2007 Workshop: Hierarchical Organization of Behavior: Computational, Psychological and Neural Perspectives (Part 1) »
Yael Niv · Matthew Botvinick · Andrew G Barto