Timezone: »
Aligned AI Poster Session
Amanda Askell · Rafal Muszynski · William Wang · Yaodong Yang · Quoc Nguyen · Bryan Kian Hsiang Low · Patrick Jaillet · Candice Schumann · Anqi Liu · Peter Eckersley · Angelina Wang · William Saunders
Author Information
Amanda Askell (NYU)
Rafal Muszynski (University College London)
William Wang (UC Berkeley)
Yaodong Yang (AIG)
Quoc Nguyen (National University of Singapore)
Bryan Kian Hsiang Low (National University of Singapore)
Patrick Jaillet (MIT)
Candice Schumann (University of Maryland)
Anqi Liu (Caltech)
Peter Eckersley (Electronic Frontier Foundation)
Chief Computer Scientist at the Electronic Frontier Foundation. Leading EFF's efforts on ML and AI policy, including AI Progress Measurement (https://eff.org/ai/metrics) as well as working on AI and computer security, and fairness and transparency policy issues.
Angelina Wang (UC Berkeley)
William Saunders (University of Toronto)
More from the Same Authors
-
2022 Poster: Meta-Reward-Net: Implicitly Differentiable Reward Learning for Preference-based Reinforcement Learning »
Runze Liu · Fengshuo Bai · Yali Du · Yaodong Yang -
2022 Poster: Constrained Update Projection Approach to Safe Policy Optimization »
Long Yang · Jiaming Ji · Juntao Dai · Linrui Zhang · Binbin Zhou · Pengfei Li · Yaodong Yang · Gang Pan -
2022 Poster: A Unified Diversity Measure for Multiagent Reinforcement Learning »
Zongkai Liu · Chao Yu · Yaodong Yang · peng sun · Zifan Wu · Yuan Li -
2022 Poster: Towards Human-Level Bimanual Dexterous Manipulation with Reinforcement Learning »
Yuanpei Chen · Tianhao Wu · Shengjie Wang · Xidong Feng · Jiechuan Jiang · Zongqing Lu · Stephen McAleer · Hao Dong · Song-Chun Zhu · Yaodong Yang -
2022 : TorchOpt: An Efficient library for Differentiable Optimization »
Jie Ren · Xidong Feng · Bo Liu · Xuehai Pan · Yao Fu · Luo Mai · Yaodong Yang -
2022 : Contextual Transformer for Offline Meta Reinforcement Learning »
Runji Lin · Ye Li · Xidong Feng · Zhaowei Zhang · XIAN HONG WU FUNG · Haifeng Zhang · Jun Wang · Yali Du · Yaodong Yang -
2023 Poster: Hierarchical Multi-Agent Skill Discovery »
Mingyu Yang · Yaodong Yang · Zhenbo Lu · Wengang Zhou · Houqiang Li -
2023 Poster: Exploiting Correlated Auxiliary Feedback in Parameterized Bandits »
Arun Verma · Zhongxiang Dai · YAO SHU · Bryan Kian Hsiang Low -
2023 Poster: Memory-Constrained Algorithms for Convex Optimization »
Moise Blanchard · Junhui Zhang · Patrick Jaillet -
2023 Poster: Team-PSRO for Learning Approximate TMECor in Large Team Games via Cooperative Reinforcement Learning »
Stephen McAleer · Gabriele Farina · Gaoyue Zhou · Mingzhi Wang · Yaodong Yang · Tuomas Sandholm -
2023 Poster: Equitable Model Valuation with Black-box Access »
Xinyi Xu · Thanh Lam · Chuan Sheng Foo · Bryan Kian Hsiang Low -
2023 Poster: Quantum Bayesian Optimization »
Zhongxiang Dai · Gregory Kang Ruey Lau · Arun Verma · YAO SHU · Bryan Kian Hsiang Low · Patrick Jaillet -
2023 Poster: Batch Bayesian Optimization For Replicable Experimental Design »
Zhongxiang Dai · Quoc Phong Nguyen · Sebastian Tay · Daisuke Urano · Richalynn Leong · Bryan Kian Hsiang Low · Patrick Jaillet -
2023 Poster: Incentives in Private Collaborative Machine Learning »
Rachael Sim · Yehong Zhang · Nghia Hoang · Xinyi Xu · Bryan Kian Hsiang Low · Patrick Jaillet -
2023 Poster: Multi-Agent First Order Constrained Optimization in Policy Space »
Youpeng Zhao · Yaodong Yang · Zhenbo Lu · Wengang Zhou · Houqiang Li -
2023 Poster: Policy Space Diversity for Non-Transitive Games »
Jian Yao · Weiming Liu · Haobo Fu · Yaodong Yang · Stephen McAleer · Qiang Fu · Wei Yang -
2023 Poster: Bayesian Optimization with Cost-varying Variable Subsets »
Sebastian Tay · Chuan Sheng Foo · Daisuke Urano · Richalynn Leong · Bryan Kian Hsiang Low -
2023 Poster: BeaverTails: A Human-Preference Dataset for LLM Harmlessness Alignment »
Jiaming Ji · Mickel Liu · Josef Dai · Xuehai Pan · Chi Zhang · Ce Bian · Boyuan Chen · Ruiyang Sun · Yizhou Wang · Yaodong Yang -
2023 Poster: Safety Gymnasium: A Unified Safe Reinforcement Learning Benchmark »
Jiaming Ji · Borong Zhang · Jiayi Zhou · Xuehai Pan · Weidong Huang · Ruiyang Sun · Yiran Geng · Josef Dai · Yaodong Yang -
2022 Spotlight: Towards Human-Level Bimanual Dexterous Manipulation with Reinforcement Learning »
Yuanpei Chen · Tianhao Wu · Shengjie Wang · Xidong Feng · Jiechuan Jiang · Zongqing Lu · Stephen McAleer · Hao Dong · Song-Chun Zhu · Yaodong Yang -
2022 Poster: Effective Dimension in Bandit Problems under Censorship »
Gauthier Guinet · Saurabh Amin · Patrick Jaillet -
2022 Poster: MATE: Benchmarking Multi-Agent Reinforcement Learning in Distributed Target Coverage Control »
Xuehai Pan · Mickel Liu · Fangwei Zhong · Yaodong Yang · Song-Chun Zhu · Yizhou Wang -
2022 Poster: Trade-off between Payoff and Model Rewards in Shapley-Fair Collaborative Machine Learning »
Quoc Phong Nguyen · Bryan Kian Hsiang Low · Patrick Jaillet -
2022 Poster: Sample-Then-Optimize Batch Neural Thompson Sampling »
Zhongxiang Dai · YAO SHU · Bryan Kian Hsiang Low · Patrick Jaillet -
2022 Poster: Multi-Agent Reinforcement Learning is a Sequence Modeling Problem »
Muning Wen · Jakub Kuba · Runji Lin · Weinan Zhang · Ying Wen · Jun Wang · Yaodong Yang -
2022 Poster: Unifying and Boosting Gradient-Based Training-Free Neural Architecture Search »
YAO SHU · Zhongxiang Dai · Zhaoxuan Wu · Bryan Kian Hsiang Low -
2022 Poster: A Theoretical Understanding of Gradient Bias in Meta-Reinforcement Learning »
Bo Liu · Xidong Feng · Jie Ren · Luo Mai · Rui Zhu · Haifeng Zhang · Jun Wang · Yaodong Yang -
2021 Workshop: New Frontiers in Federated Learning: Privacy, Fairness, Robustness, Personalization and Data Ownership »
Nghia Hoang · Lam Nguyen · Pin-Yu Chen · Tsui-Wei Weng · Sara Magliacane · Bryan Kian Hsiang Low · Anoop Deoras -
2021 Panel: How Should a Machine Learning Researcher Think About AI Ethics? »
Amanda Askell · Abeba Birhane · Jesse Dodge · Casey Fiesler · Pascale N Fung · Hanna Wallach -
2021 Poster: Differentially Private Federated Bayesian Optimization with Distributed Exploration »
Zhongxiang Dai · Bryan Kian Hsiang Low · Patrick Jaillet -
2021 Poster: Gradient Driven Rewards to Guarantee Fairness in Collaborative Machine Learning »
Xinyi Xu · Lingjuan Lyu · Xingjun Ma · Chenglin Miao · Chuan Sheng Foo · Bryan Kian Hsiang Low -
2021 Poster: Fault-Tolerant Federated Reinforcement Learning with Theoretical Guarantee »
Xiaofeng Fan · Yining Ma · Zhongxiang Dai · Wei Jing · Cheston Tan · Bryan Kian Hsiang Low -
2021 Poster: Optimizing Conditional Value-At-Risk of Black-Box Functions »
Quoc Phong Nguyen · Zhongxiang Dai · Bryan Kian Hsiang Low · Patrick Jaillet -
2021 Poster: Validation Free and Replication Robust Volume-based Data Valuation »
Xinyi Xu · Zhaoxuan Wu · Chuan Sheng Foo · Bryan Kian Hsiang Low -
2020 Poster: Variational Bayesian Unlearning »
Quoc Phong Nguyen · Bryan Kian Hsiang Low · Patrick Jaillet -
2020 Poster: Federated Bayesian Optimization via Thompson Sampling »
Zhongxiang Dai · Bryan Kian Hsiang Low · Patrick Jaillet -
2020 Poster: Efficient Exploration of Reward Functions in Inverse Reinforcement Learning via Bayesian Optimization »
Sreejith Balakrishnan · Quoc Phong Nguyen · Bryan Kian Hsiang Low · Harold Soh -
2020 Poster: No-regret Learning in Price Competitions under Consumer Reference Effects »
Negin Golrezaei · Patrick Jaillet · Jason Cheuk Nam Liang -
2019 : Coffee break, posters, and 1-on-1 discussions »
Julius von Kügelgen · David Rohde · Candice Schumann · Grace Charles · Victor Veitch · Vira Semenova · Mert Demirer · Vasilis Syrgkanis · Suraj Nair · Aahlad Puli · Masatoshi Uehara · Aditya Gopalan · Yi Ding · Ignavier Ng · Khashayar Khosravi · Eli Sherman · Shuxi Zeng · Aleksander Wieczorek · Hao Liu · Kyra Gan · Jason Hartford · Miruna Oprescu · Alexander D'Amour · Jörn Boehnke · Yuta Saito · Théophile Griveau-Billion · Chirag Modi · Shyngys Karimov · Jeroen Berrevoets · Logan Graham · Imke Mayer · Dhanya Sridhar · Issa Dahabreh · Alan Mishler · Duncan Wadsworth · Khizar Qureshi · Rahul Ladhania · Gota Morishita · Paul Welle -
2019 Poster: Making the Cut: A Bandit-based Approach to Tiered Interviewing »
Candice Schumann · Zhi Lang · Jeffrey Foster · John Dickerson -
2019 Poster: Implicit Posterior Variational Inference for Deep Gaussian Processes »
Haibin YU · Yizhou Chen · Bryan Kian Hsiang Low · Patrick Jaillet · Zhongxiang Dai -
2019 Spotlight: Implicit Posterior Variational Inference for Deep Gaussian Processes »
Haibin YU · Yizhou Chen · Bryan Kian Hsiang Low · Patrick Jaillet · Zhongxiang Dai -
2018 : Poster Session 1 »
Kyle H Ambert · Brandon Araki · Xiya Cao · Sungjoon Choi · Hao(Jackson) Cui · Jonas Degrave · Yaqi Duan · Mattie Fellows · Carlos Florensa · Karan Goel · Aditya Gopalan · Ming-Xu Huang · Jonathan Hunt · Cyril Ibrahim · Brian Ichter · Maximilian Igl · Zheng Tracy Ke · Igor Kiselev · Anuj Mahajan · Arash Mehrjou · Karl Pertsch · Alexandre Piche · Nicholas Rhinehart · Thomas Ringstrom · Reazul Hasan Russel · Oleh Rybkin · Ion Stoica · Sharad Vikram · Angelina Wang · Ting-Han Wei · Abigail H Wen · I-Chen Wu · Zhengwei Wu · Linhai Xie · Dinghan Shen -
2018 : Spotlights 1 »
Ming-Xu Huang · Hao(Jackson) Cui · Arash Mehrjou · Yaqi Duan · Sharad Vikram · Angelina Wang · Karan Goel · Jonathan Hunt · Zhengwei Wu · Dinghan Shen · Mattie Fellows -
2018 : Contributed Talk 3: Learning Robotic Manipulation through Visual Planning and Acting »
Angelina Wang -
2018 Poster: Thermostat-assisted continuously-tempered Hamiltonian Monte Carlo for Bayesian learning »
Rui Luo · Jianhong Wang · Yaodong Yang · Jun WANG · Zhanxing Zhu -
2017 : Poster Session 2 »
Farhan Shafiq · Antonio Tomas Nevado Vilchez · Takato Yamada · Sakyasingha Dasgupta · Robin Geyer · Moin Nabi · Crefeda Rodrigues · Edoardo Manino · Alexantrou Serb · Miguel A. Carreira-Perpinan · Kar Wai Lim · Bryan Kian Hsiang Low · Rohit Pandey · Marie C White · Pavel Pidlypenskyi · Xue Wang · Christine Kaeser-Chen · Michael Zhu · Suyog Gupta · Sam Leroux -
2017 : Safer Classification by Synthesis »
William Wang -
2017 : Finite Supervision Reinforcement Learning »
William Saunders · Eric Langlois -
2017 : Robust Covariate Shift with Exact Loss Functions »
Anqi Liu -
2017 : Poster Session »
Shunsuke Horii · Heejin Jeong · Tobias Schwedes · Qing He · Ben Calderhead · Ertunc Erdil · Jaan Altosaar · Patrick Muchmore · Rajiv Khanna · Ian Gemp · Pengfei Zhang · Yuan Zhou · Chris Cremer · Maria DeYoreo · Alexander Terenin · Brendan McVeigh · Rachit Singh · Yaodong Yang · Erik Bodin · Trefor Evans · Henry Chai · Shandian Zhe · Jeffrey Ling · Vincent ADAM · Lars Maaløe · Andrew Miller · Ari Pakman · Josip Djolonga · Hong Ge -
2017 Poster: Real-Time Bidding with Side Information »
arthur flajolet · Patrick Jaillet -
2017 Poster: Online Learning with a Hint »
Ofer Dekel · arthur flajolet · Nika Haghtalab · Patrick Jaillet -
2016 : Robust Covariate Shift Classification Using Multiple Feature Views »
Anqi Liu -
2016 Poster: Adversarial Multiclass Classification: A Risk Minimization Perspective »
Rizal Fathony · Anqi Liu · Kaiser Asif · Brian Ziebart -
2015 Poster: Inverse Reinforcement Learning with Locally Consistent Reward Functions »
Quoc Phong Nguyen · Bryan Kian Hsiang Low · Patrick Jaillet -
2014 Poster: Robust Classification Under Sample Selection Bias »
Anqi Liu · Brian Ziebart -
2014 Spotlight: Robust Classification Under Sample Selection Bias »
Anqi Liu · Brian Ziebart -
2013 Poster: Regret based Robust Solutions for Uncertain Markov Decision Processes »
Asrar Ahmed · Pradeep Varakantham · Yossiri Adulyasak · Patrick Jaillet