Timezone: »
Modes or Modal-sets are points or regions of space where the underlying data density is locally-maximal. They are relevant in problems such as clustering, outlier detection, or can simply serve to identify salient structures in high-dimensional data (e.g. point-cloud data from medical imaging, astronomy, etc).
In this talk we will argue that modal-sets, as general extremal surfaces, yield more stable clustering than usual modes (extremal points) of a density. For one, modal-sets can be consistently estimated, at non-trivial convergence rates, despite the added complexity of unknown surface-shape and dimension. Furthermore, modal-sets neatly dovetail into existing approaches that cluster data around point-modes, yielding competitive, yet more stable clustering on a range of real-world problems.
Author Information
Samory Kpotufe (Princeton University)
More from the Same Authors
-
2018 Poster: PAC-Bayes Tree: weighted subtrees with guarantees »
Tin Nguyen · Samory Kpotufe -
2016 Workshop: Adaptive and Scalable Nonparametric Methods in Machine Learning »
Aaditya Ramdas · Arthur Gretton · Bharath Sriperumbudur · Han Liu · John Lafferty · Samory Kpotufe · Zoltán Szabó -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Poster: Optimal rates for k-NN density and mode estimation »
Sanjoy Dasgupta · Samory Kpotufe -
2013 Workshop: Modern Nonparametric Methods in Machine Learning »
Arthur Gretton · Mladen Kolar · Samory Kpotufe · John Lafferty · Han Liu · Bernhard Schölkopf · Alexander Smola · Rob Nowak · Mikhail Belkin · Lorenzo Rosasco · peter bickel · Yue Zhao -
2013 Poster: Regression-tree Tuning in a Streaming Setting »
Samory Kpotufe · Francesco Orabona -
2013 Poster: Adaptivity to Local Smoothness and Dimension in Kernel Regression »
Samory Kpotufe · Vikas K Garg -
2013 Spotlight: Regression-tree Tuning in a Streaming Setting »
Samory Kpotufe · Francesco Orabona -
2012 Poster: Gradient Weights help Nonparametric Regressors »
Samory Kpotufe · Abdeslam Boularias -
2012 Oral: Gradient Weights help Nonparametric Regressors »
Samory Kpotufe · Abdeslam Boularias -
2011 Poster: k-NN Regression Adapts to Local Intrinsic Dimension »
Samory Kpotufe -
2011 Oral: k-NN Regression Adapts to Local Intrinsic Dimension »
Samory Kpotufe -
2009 Poster: Fast, smooth and adaptive regression in metric spaces »
Samory Kpotufe