Timezone: »
Feel free to enjoy posters at lunch time as well!
Víctor Campos, Brendan Jou, Xavier Giró-I-Nieto, Jordi Torres and Shih-Fu Chang. Skip RNN: Learning to Skip State Updates in Recurrent Neural Networks.
Yao-Hung Hubert Tsai, Han Zhao, Nebojsa Jojic and Ruslan Salakhutdinov. DISCOVERING ORDER IN UNORDERED DATASETS: GENERATIVE MARKOV NETWORKS.
Yaguang Li, Rose Yu, Cyrus Shahabi and Yan Liu. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting.
Alex Tank, Emily Fox and Ali Shojaie. An Efficient ADMM Algorithm for Structural Break Detection in Multivariate Time Series.
Hossein Soleimani, James Hensman and Suchi Saria. Scalable Joint Models for Reliable Event Prediction.
Daiki Suehiro, Kohei Hatano, Eiji Takimoto, Shuji Yamamoto, Kenichi Bannai and Akiko Takeda. Learning theory and algorithms for shapelets and other local features.
Tao-Yi Lee, Yuh-Jye Lee, Hsing-Kuo Pao, You-Hua Lin and Yi-Ren Yeh. Elastic Motif Segmentation and Alignment of Time Series for Encoding and Classification.
Yun Jie Serene Yeo, Kian Ming A. Chai, Weiping Priscilla Fan, Si Hui Maureen Lee, Junxian Ong, Poh Ling Tan, Yu Li Lydia Law and Kok-Yong Seng. DP Mixture of Warped Correlated GPs for Individualized Time Series Prediction.
Anish Agarwal, Muhammad Amjad, Devavrat Shah and Dennis Shen. Time Series Forecasting = Matrix Estimation.
Rose Yu, Stephan Zheng, Anima Anandkumar and Yisong Yue. Long-term Forecasting using Tensor-Train RNNs.
Pranamesh Chakraborty, Chinmay Hegde and Anuj Sharma. Trend Filtering in Network Time Series with Applications to Traffic Incident Detection.
Jaleh Zand and Stephen Roberts. MiDGaP: Mixture Density Gaussian Processes.
Dimitrios Giannakis, Joanna Slawinska, Abbas Ourmazd and Zhizhen Zhao. Vector-Valued Spectral Analysis of Space-Time Data.
Ruofeng Wen, Kari Torkkola and Balakrishnan Narayanaswamy. A Multi-Horizon Quantile Recurrent Forecaster.
Alessandro Davide Ialongo, Mark van der Wilk and Carl Edward Rasmussen. Closed-form Inference and Prediction in Gaussian Process State-Space Models.
Hao Liu, Haoli Bai, Lirong He and Zenglin Xu. Structured Inference for Recurrent Hidden Semi-markov Model.
Petar Veličković, Laurynas Karazija, Nicholas Lane, Sourav Bhattacharya, Edgar Liberis, Pietro Lio, Angela Chieh, Otmane Bellahsen and Matthieu Vegreville. Cross-modal Recurrent Models for Weight Objective Prediction from Multimodal Time-series Data.
Kun Tu, Bruno Ribeiro, Ananthram Swami and Don Towsley. Temporal Clustering in time-varying Networks with Time Series Analysis.
Shaojie Bai, J. Zico Kolter and Vladlen Koltun. Convolutional Sequence Modeling Revisited.
Apurv Shukla, Se-Young Yun and Daniel Bienstock. Non-Stationary Streaming PCA.
Kun Zhao, Takayuki Osogami and Rudy Raymond. Fluid simulation with dynamic Boltzmann machine in batch manner.
Anderson Zhang, Miao Lu, Deguang Kong and Jimmy Yang. Bayesian Time Series Forecasting with Change Point and Anomaly Detection.
Akara Supratak, Steffen Schneider, Hao Dong, Ling Li and Yike Guo. Towards Desynchronization Detection in Biosignals.
Rudy Raymond, Takayuki Osogami and Sakyasingha Dasgupta. Dynamic Boltzmann Machines for Second Order Moments and Generalized Gaussian Distributions.
Itamar Ben-Ari and Ravid Shwartz-Ziv. Sequence modeling using a memory controller extension for LSTM.
Neil Dhir and Adam Kosiorek. Bayesian delay embeddings for dynamical systems.
Aleksander Wieczorek and Volker Roth. Time Series Classification with Causal Compression.
Daniel Hernandez, Liam Paninski and John Cunningham. Variational inference for latent nonlinear dynamics.
Alex Tank, Ian Covert, Nick Foti, Ali Shojaie and Emily Fox. An Interpretable and Sparse Neural Network Model for Nonlinear Granger Causality Discovery.
John Alberg and Zachary Lipton. Improving Factor-Based Quantitative Investing by Forecasting Company Fundamentals.
Achintya Kr. Sarkar and Zheng-Hua Tan. Time-Contrastive Learning Based DNN Bottleneck Features for Text-Dependent Speaker Verification.
Ankit Gandhi, Vineet Chaoji and Arijit Biswas. Modeling Customer Time Series for Age Prediction.
Zahra Ebrahimzadeh and Samantha Kleinberg. Multi-Scale Change Point Detection in Multivariate Time Series.
Author Information
Jaleh Zand (University of Oxford)
Kun Tu (Univ. of Massachusetts Amherst)
Michael (Tao-Yi) Lee (National Taiwan University)
Ian Covert (University of Washington)
Daniel Hernandez (Columbia University)
Zahra Ebrahimzadeh (Stevens Institute of Technology)
Joanna Slawinska (University of Wisconsin-Milwaukee)
Akara Supratak (Imperial College London)
Miao Lu (Yahoo Research)
John Alberg (Euclidean Technologies, Inc)
Dennis Shen (Massachusetts Institute of Technology)
Serene Yeo (DSO National Laboratories)
Hsing-Kuo K Pao (National Taiwan University of Science and Technology)
Kian Ming Adam Chai (DSO National Laboratories)
Anish Agarwal (MIT)
Dimitrios Giannakis (New York University)
Muhammad Amjad (MIT)
More from the Same Authors
-
2021 : Causal Matrix Completion »
Anish Agarwal -
2021 : On-the-fly Strategy Adaptation for ad-hoc Agent Coordination »
Jaleh Zand · Jack Parker-Holder · Stephen J Roberts -
2022 : A Causal Inference Framework for Network Interference with Panel Data »
Sarah Cen · Anish Agarwal · Christina Yu · Devavrat Shah -
2023 Poster: On the Robustness of Removal-Based Feature Attributions »
Chris Lin · Ian Covert · Su-In Lee -
2023 Poster: Feature Selection in the Contrastive Analysis Setting »
Ethan Weinberger · Ian Covert · Su-In Lee -
2021 Poster: PerSim: Data-Efficient Offline Reinforcement Learning with Heterogeneous Agents via Personalized Simulators »
Anish Agarwal · Abdullah Alomar · Varkey Alumootil · Devavrat Shah · Dennis Shen · Zhi Xu · Cindy Yang -
2020 : Feature Removal Is a Unifying Principle For Model Explanation Methods »
Ian Covert -
2020 Demonstration: tspDB: Time Series Predict DB »
Anish Agarwal · Abdullah Alomar · Devavrat Shah -
2020 Poster: Understanding Global Feature Contributions With Additive Importance Measures »
Ian Covert · Scott Lundberg · Su-In Lee -
2019 : Coffee break, posters, and 1-on-1 discussions »
Yangyi Lu · Daniel Chen · Hongseok Namkoong · Marie Charpignon · Maja Rudolph · Amanda Coston · Julius von Kügelgen · Niranjani Prasad · Paramveer Dhillon · Yunzong Xu · Yixin Wang · Alexander Markham · David Rohde · Rahul Singh · Zichen Zhang · Negar Hassanpour · Ankit Sharma · Ciarán Lee · Jean Pouget-Abadie · Jesse Krijthe · Divyat Mahajan · Nan Rosemary Ke · Peter Wirnsberger · Vira Semenova · Dmytro Mykhaylov · Dennis Shen · Kenta Takatsu · Liyang Sun · Jeremy Yang · Alexander Franks · Pak Kan Wong · Tauhid Zaman · Shira Mitchell · min kyoung kang · Qi Yang -
2019 Poster: On Robustness of Principal Component Regression »
Anish Agarwal · Devavrat Shah · Dennis Shen · Dogyoon Song -
2019 Oral: On Robustness of Principal Component Regression »
Anish Agarwal · Devavrat Shah · Dennis Shen · Dogyoon Song -
2018 : Lunch »
Hong Yu · Bhanu Pratap Singh Rawat · Arijit Ukil · Waheeda Saib · Jekaterina Novikova · John Hughes · Yuhui Zhang · Rahul V · Mi Jung Kim · Babak Taati · Hariharan Ravishankar · Harry Clifford · Hirofumi Kobayashi · Babak Taati · Keyang Xu · Yen-Chi Cheng · Timothy Cannings · Jayashree Kalpathy-Cramer · Jayashree Kalpathy-Cramer · Parinaz Sobhani · Kimis Perros · Wei-Hung Weng · Yordan Raykov · Lars Lorch · Mengqi Jin · Xue Teng · Michael Ferlaino · Marek Rei · Cédric Beaulac · Aman Verma · Sebastian Keller · Edmond Cunningham · Luc Evers · Victor Rodriguez · Vipul Satone · Dianbo Liu · Angeline Yasodhara · Geoff Tison · Ligin Solamen · Bryan He · Rahul Ladhania · Yipeng Shi · Md Nafiz Hamid · Pouria Mashouri · Woochan Hwang · Sejin Park · Xu Chen · Rachneet Kaur · Davis Blalock · Holly Wiberg · Parminder Bhatia · Kezi Yu · RUMENG LI · Jun Sakuma · Charles Ding · Aaron Babier · Yong Cai · A Pratap · Luke O'Connor · Allen Nie · Martin Kang · Ian Covert · Xun Wang · Zelun Luo · Serena Yeung · William Boag · Kazuki Tachikawa · Mary Saltz · Owen Lahav · Edward Lee · Eric Teasley · Michael Kamp · Nirmesh Patel · Vishwali Mhasawade · Maxim Samarin · Ryo Uchimido · Farzad Khalvati · Francisco Cruz · Laura Symul · Zaid Nabulsi · Mads Mihailescu · Rosalind Picard -
2013 Poster: Active Learning for Probabilistic Hypotheses Using the Maximum Gibbs Error Criterion »
Nguyen Viet Cuong · Wee Sun Lee · Nan Ye · Kian Ming Adam Chai · Hai Leong Chieu -
2009 Poster: Generalization Errors and Learning Curves for Regression with Multi-task Gaussian Processes »
Kian Ming A Chai -
2008 Poster: Multi-task Gaussian Process Learning of Robot Inverse Dynamics »
Kian Ming A Chai · Chris Williams · Stefan Klanke · Sethu Vijayakumar -
2008 Spotlight: Multi-task Gaussian Process Learning of Robot Inverse Dynamics »
Kian Ming A Chai · Chris Williams · Stefan Klanke · Sethu Vijayakumar -
2007 Poster: Multi-task Gaussian Process Prediction »
Edwin Bonilla · Kian Ming A Chai · Chris Williams -
2007 Spotlight: Multi-task Gaussian Process Prediction »
Edwin Bonilla · Kian Ming A Chai · Chris Williams