Timezone: »
The Expxorcist: Nonparametric Graphical Models Via Conditional Exponential Densities
Arun Suggala
Fri Dec 08 04:35 PM -- 04:55 PM (PST) @
Non-parametric multivariate density estimation faces strong statistical and computational bottlenecks, and the more practical approaches impose near-parametric assumptions on the form of the density functions. In this paper, we leverage recent developments to propose a class of non-parametric models which have very attractive computational and statistical properties.
Author Information
Arun Suggala (Carnegie Mellon University)
More from the Same Authors
-
2021 Poster: Boosted CVaR Classification »
Runtian Zhai · Chen Dan · Arun Suggala · J. Zico Kolter · Pradeep Ravikumar -
2020 Poster: Follow the Perturbed Leader: Optimism and Fast Parallel Algorithms for Smooth Minimax Games »
Arun Suggala · Praneeth Netrapalli -
2020 Poster: Generalized Boosting »
Arun Suggala · Bingbin Liu · Pradeep Ravikumar -
2019 Poster: On the (In)fidelity and Sensitivity of Explanations »
Chih-Kuan Yeh · Cheng-Yu Hsieh · Arun Suggala · David Inouye · Pradeep Ravikumar -
2018 Poster: Connecting Optimization and Regularization Paths »
Arun Suggala · Adarsh Prasad · Pradeep Ravikumar -
2017 : Posters »
Reihaneh Rabbany · Tianxi Li · Jacob Carroll · Yin Cheng Ng · Xueyu Mao · Alexandre Hollocou · Jeric Briones · James Atwood · John Santerre · Natalie Klein · Pranamesh Chakraborty · Zahra Razaee · Chandan Singh · Arun Suggala · Beilun Wang · Andrew R. Lawrence · Aditya Grover · FARSHAD HARIRCHI · radhika arava · Qing Zhou · Takatomi Kubo · Josue Orellana · Govinda Kamath · Vivek Kumar Bagaria -
2017 Poster: The Expxorcist: Nonparametric Graphical Models Via Conditional Exponential Densities »
Arun Suggala · Mladen Kolar · Pradeep Ravikumar