Timezone: »
Discussion: Geometric Data Analysis
Frederic Chazal · Marina Meila
One aim of this workshop is to build connections between Topological Data Analysis on one side and Manifold Learning on the other. The moment has been reached when the mathematical, statistical and algorithmic foundations of both areas are mature enough -- it is now time to lay the foundations for joint topological and differential geometric understanding of data, and this discussion will explicitly focus on this process.
The second aim is to bring GDA closer to real applications. We see the challenge of real problems and real data as a motivator for researchers to explore new research questions, to reframe and expand the existing theory, and to step out of their own sub-area.
Author Information
Frederic Chazal (INRIA)
Marina Meila (University of Washington)
More from the Same Authors
-
2020 : Closing Remarks »
Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Bastian Rieck · Yuhei Umeda · Guy Wolf -
2020 Workshop: Topological Data Analysis and Beyond »
Bastian Rieck · Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Yuhei Umeda · Guy Wolf -
2020 : Opening Remarks »
Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Bastian Rieck · Yuhei Umeda · Guy Wolf -
2020 Poster: PLLay: Efficient Topological Layer based on Persistent Landscapes »
Kwangho Kim · Jisu Kim · Manzil Zaheer · Joon Kim · Frederic Chazal · Larry Wasserman -
2020 Session: Orals & Spotlights Track 27: Unsupervised/Probabilistic »
Marina Meila · Kun Zhang -
2018 : Invited Talk 1 »
Marina Meila -
2018 Poster: How to tell when a clustering is (approximately) correct using convex relaxations »
Marina Meila -
2017 : Topological Data Analisys with GUDHI and scalable manifold learning and clustering with megaman »
Vincent Rouvreau · Marina Meila -
2017 Workshop: Synergies in Geometric Data Analysis (TWO DAYS) »
Marina Meila · Frederic Chazal · Yu-Chia Chen -
2017 Poster: Improved Graph Laplacian via Geometric Self-Consistency »
Dominique Perrault-Joncas · Marina Meila · James McQueen -
2016 Poster: Data driven estimation of Laplace-Beltrami operator »
Frederic Chazal · Ilaria Giulini · Bertrand Michel -
2016 Poster: Nearly Isometric Embedding by Relaxation »
James McQueen · Marina Meila · Dominique Perrault-Joncas -
2016 Poster: Graph Clustering: Block-models and model free results »
Yali Wan · Marina Meila -
2015 Poster: A class of network models recoverable by spectral clustering »
Yali Wan · Marina Meila -
2014 Poster: Recursive Inversion Models for Permutations »
Christopher Meek · Marina Meila -
2011 Poster: Directed Graph Embedding: an Algorithm based on Continuous Limits of Laplacian-type Operators »
Dominique C Perrault-Joncas · Marina Meila -
2011 Spotlight: Directed Graph Embedding: an Algorithm based on Continuous Limits of Laplacian-type Operators »
Dominique C Perrault-Joncas · Marina Meila -
2009 Workshop: Learning with Orderings »
Tiberio Caetano · Carlos Guestrin · Jonathan Huang · Risi Kondor · Guy Lebanon · Marina Meila -
2007 Workshop: Topology Learning: New Challenges At the Crossing of Machine Learning, »
Michael Aupetit · Frederic Chazal · Gilles Gasso · David Cohen-Steiner · pierre gaillard