Timezone: »
The sparse matrix estimation problem consists of estimating the distribution of an n-by-n matrix Y , from a sparsely observed single instance of this matrix where the entries of Y are independent random variables. This captures a wide array of problems; special instances include matrix completion in the context of recommendation systems, graphon estimation, and community detection in (mixed membership) stochastic block models. Inspired by classical collaborative filtering for recommendation systems, we propose a novel iterative, collaborative filtering style algorithm for matrix estimation in this generic setting. Under model assumptions of uniform sampling, bounded entries, and finite spectrum, we provide bounds on the the mean squared error (MSE) of our estimator and show improved sample complexity.
Author Information
Christina Lee (Microsoft Research)
More from the Same Authors
-
2017 Workshop: Nearest Neighbors for Modern Applications with Massive Data: An Age-old Solution with New Challenges »
George H Chen · Devavrat Shah · Christina Lee -
2017 Poster: Thy Friend is My Friend: Iterative Collaborative Filtering for Sparse Matrix Estimation »
Christian Borgs · Jennifer Chayes · Christina Lee · Devavrat Shah -
2016 Poster: Blind Regression: Nonparametric Regression for Latent Variable Models via Collaborative Filtering »
Dogyoon Song · Christina Lee · Yihua Li · Devavrat Shah -
2013 Poster: Computing the Stationary Distribution Locally »
Christina Lee · Asuman Ozdaglar · Devavrat Shah