Timezone: »

 
Poster session 2 and coffee break
Sean McGregor · Tobias Hagge · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy

Fri Dec 08 03:00 PM -- 04:00 PM (PST) @

Author Information

Sean McGregor (XPRIZE Foundation)

Sean received a PhD in Machine Learning at Oregon State under the direction of Thomas Dietterich. Sean's machine learning and visualization research focus on the optimization, testing, and interpretation of reinforcement learning policies. Sean has spoken during the conferences and workshops of NIPS, RLDM, AAAI, OSCON, VL/HCC, CompSustNet, OpenSourceBridge, and the United Nations. Sean is originally from San Diego and enjoys riding waves. In Oregon he picked up whitewater kayaking, as well as rock climbing.

Tobias Hagge (Pacific Northwest National Laboratory)
Markus Stoye (CERN)

- Head of deep learning in REEXEN - Machine learning representative at CERN laboratory for CMS experiment

Trang Thi Minh Pham (Deakin University)
Seungkyun Hong (Korea Institute of Science and Technology Information)
Amir Farbin (University of Texas at Arlington)
Sungyong Seo (University of Southern California)
Susana Zoghbi (SETI)
Daniel George (University of Illinois at Urbana-Champaign)

Daniel George is a PhD student in Astronomy, with a fellowship in Computational Science and Engineering (CSE), at the University of Illinois at Urbana-Champaign. He obtained his Bachelor's degree in Engineering Physics from IIT Bombay. He is currently a Research Assistant in the Gravity Group at the National Center for Supercomputing Applications (NCSA), a member of the LIGO, NANOGrav, and Dark Energy Survey (DES) collaborations, and an LSST Data Science Fellow, working at the interface of deep learning, signal processing, high-performance computing, and gravitational wave and multimessenger astrophysics. His long-term interests lie in applying cutting-edge computer science and technology, especially artificial intelligence, to accelerate discoveries in the fundamental sciences.

Stanislav Fort (Stanford University)
Steven Farrell (Lawrence Berkeley National Laboratory)
Arthur Pajot (UPMC, LIP6)
Kyle Pearson (University of Arizona)
Adam McCarthy (CCDS)
Cecile Germain (Universite Paris Sud)
Dustin Anderson (California Institute of Technology)
Mario Lezcano Casado (University of Oxford)
Mayur Mudigonda (UC Berkeley)
Benjamin Nachman (Lawrence Berkeley National Laboratory)
Luke de Oliveira (Berkeley Lab / Vai Technologies)

I'm a founder at Vai Technologies, where we are building software to help organizations and enterprises make sense of and leverage large volumes of text using deep learning. I am also a visiting researcher at Lawrence Berkeley National Laboratory (LBNL) where I work on deep generative modeling in the natural sciences. I've published a few papers on learning aspects of high energy particle collisions using Generative Adversarial Networks. I'm also an advisor at a handful of startups.

Li Jing (MIT)
Lingge Li (University of California Irvine)
Soo Kyung Kim (Lawrence Livermore National Laboratory)
Timothy Gebhard (Max Planck Institute for Intelligent Systems)
Tom Zahavy (The Technion)

More from the Same Authors

  • 2021 Spotlight: Reward is enough for convex MDPs »
    Tom Zahavy · Brendan O'Donoghue · Guillaume Desjardins · Satinder Singh
  • 2021 : Latent Space Refinement for Deep Generative Models »
    Ramon Winterhalder · Marco Bellagente · Benjamin Nachman
  • 2021 : Classifying Anomalies THrough Outer Density Estimation (CATHODE) »
    Joshua Isaacson · Gregor Kasieczka · Benjamin Nachman · David Shih · Manuel Sommerhalder
  • 2021 : Uncertainty Aware Learning for High Energy Physics With A Cautionary Tale »
    Aishik Ghosh · Benjamin Nachman
  • 2021 : Symmetry Discovery with Deep Learning »
    Krish Desai · Benjamin Nachman · Jesse Thaler
  • 2021 : Latent Space Refinement for Deep Generative Models »
    Ramon Winterhalder · Marco Bellagente · Benjamin Nachman
  • 2022 : Learning Uncertainties the Frequentist Way: Calibration and Correlation in High Energy Physics »
    Rikab Gambhir · Jesse Thaler · Benjamin Nachman
  • 2022 : Efficiently Moving Instead of Reweighting Collider Events with Machine Learning »
    Radha Mastandrea · Benjamin Nachman
  • 2022 : Deconvolving Detector Effects for Distribution Moments »
    Krish Desai · Benjamin Nachman · Jesse Thaler
  • 2022 : Atmospheric retrievals of exoplanets using learned parameterizations of pressure-temperature profiles »
    Timothy Gebhard · Daniel Angerhausen · Björn Konrad · Eleonora Alei · Sascha Quanz · Bernhard Schölkopf
  • 2022 : Particle-level Compression for New Physics Searches »
    Yifeng Huang · Jack Collins · Benjamin Nachman · Simon Knapen · Daniel Whiteson
  • 2022 : One-Class Dense Networks for Anomaly Detection »
    Norman Karr · Benjamin Nachman · David Shih
  • 2022 : Anomaly Detection with Multiple Reference Datasets in High Energy Physics »
    Mayee Chen · Benjamin Nachman · Frederic Sala
  • 2022 : Inferring molecular complexity from mass spectrometry data using machine learning »
    Timothy Gebhard · Aaron C. Bell · Jian Gong · Jaden J. A. Hastings · George Fricke · Nathalie Cabrol · Scott Sandford · Michael Phillips · Kimberley Warren-Rhodes · Atilim Gunes Baydin
  • 2022 : Indexing AI Risks with Incidents, Issues, and Variants »
    Sean McGregor · Kevin Paeth · Khoa Lam
  • 2023 Workshop: NeurIPS 2023 Workshop: Machine Learning and the Physical Sciences »
    Brian Nord · Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Siddharth Mishra-Sharma · Benjamin Nachman · Kyle Cranmer · Gilles Louppe · Savannah Thais
  • 2022 Workshop: Machine Learning and the Physical Sciences »
    Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg
  • 2022 : Invited Talk by ‪Stanislav Fort »
    Stanislav Fort
  • 2021 : Bootstrapped Meta-Learning »
    Sebastian Flennerhag · Yannick Schroecker · Tom Zahavy · Hado van Hasselt · David Silver · Satinder Singh
  • 2021 Workshop: Machine Learning and the Physical Sciences »
    Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais
  • 2021 Poster: Exploring the Limits of Out-of-Distribution Detection »
    Stanislav Fort · Jie Ren · Balaji Lakshminarayanan
  • 2021 Poster: Reward is enough for convex MDPs »
    Tom Zahavy · Brendan O'Donoghue · Guillaume Desjardins · Satinder Singh
  • 2021 Poster: Discovery of Options via Meta-Learned Subgoals »
    Vivek Veeriah · Tom Zahavy · Matteo Hessel · Zhongwen Xu · Junhyuk Oh · Iurii Kemaev · Hado van Hasselt · David Silver · Satinder Singh
  • 2020 : Q/A and Panel Discussion for People-Earth with Dan Kammen and Milind Tambe »
    Daniel Kammen · Milind Tambe · Giulio De Leo · Mayur Mudigonda · Surya Karthik Mukkavilli
  • 2020 : People-Earth »
    Mayur Mudigonda
  • 2020 : Q/A and Discussion for ML Theory Session »
    Karthik Kashinath · Mayur Mudigonda · Stephan Mandt · Rose Yu
  • 2020 : Q/A and Discussion »
    Surya Karthik Mukkavilli · Mayur Mudigonda · Milind Tambe
  • 2020 Workshop: AI for Earth Sciences »
    Surya Karthik Mukkavilli · Johanna Hansen · Natasha Dudek · Tom Beucler · Kelly Kochanski · Mayur Mudigonda · Karthik Kashinath · Amy McGovern · Paul D Miller · Chad Frischmann · Pierre Gentine · Gregory Dudek · Aaron Courville · Daniel Kammen · Vipin Kumar
  • 2020 Poster: Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel »
    Stanislav Fort · Gintare Karolina Dziugaite · Mansheej Paul · Sepideh Kharaghani · Daniel Roy · Surya Ganguli
  • 2020 Poster: A Self-Tuning Actor-Critic Algorithm »
    Tom Zahavy · Zhongwen Xu · Vivek Veeriah · Matteo Hessel · Junhyuk Oh · Hado van Hasselt · David Silver · Satinder Singh
  • 2019 : Afternoon Coffee Break & Poster Session »
    Heidi Komkov · Stanislav Fort · Zhaoyou Wang · Rose Yu · Ji Hwan Park · Samuel Schoenholz · Taoli Cheng · Ryan-Rhys Griffiths · Chase Shimmin · Surya Karthik Mukkavili · Philippe Schwaller · Christian Knoll · Yangzesheng Sun · Keiichi Kisamori · Gavin Graham · Gavin Portwood · Hsin-Yuan Huang · Paul Novello · Moritz Munchmeyer · Anna Jungbluth · Daniel Levine · Ibrahim Ayed · Steven Atkinson · Jan Hermann · Peter Grönquist · · Priyabrata Saha · Yannik Glaser · Lingge Li · Yutaro Iiyama · Rushil Anirudh · Maciej Koch-Janusz · Vikram Sundar · Francois Lanusse · Auralee Edelen · Jonas Köhler · Jacky H. T. Yip · jiadong guo · Xiangyang Ju · Adi Hanuka · Adrian Albert · Valentina Salvatelli · Mauro Verzetti · Javier Duarte · Eric Moreno · Emmanuel de Bézenac · Athanasios Vlontzos · Alok Singh · Thomas Klijnsma · Brad Neuberg · Paul Wright · Mustafa Mustafa · David Schmidt · Steven Farrell · Hao Sun
  • 2019 : Poster and Coffee Break 2 »
    Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall
  • 2019 : Lunch + Poster Session »
    Frederik Gerzer · Bill Yang Cai · Pieter-Jan Hoedt · Kelly Kochanski · Soo Kyung Kim · Yunsung Lee · Sunghyun Park · Sharon Zhou · Martin Gauch · Jonathan Wilson · Joyjit Chatterjee · Shamindra Shrotriya · Dimitri Papadimitriou · Christian Schön · Valentina Zantedeschi · Gabriella Baasch · Willem Waegeman · Gautier Cosne · Dara Farrell · Brendan Lucier · Letif Mones · Caleb Robinson · Tafara Chitsiga · Victor Kristof · Hari Prasanna Das · Yimeng Min · Alexandra Puchko · Alexandra Luccioni · Kyle Story · Jason Hickey · Yue Hu · Björn Lütjens · Zhecheng Wang · Renzhi Jing · Genevieve Flaspohler · Jingfan Wang · Saumya Sinha · Qinghu Tang · Armi Tiihonen · Ruben Glatt · Muge Komurcu · Jan Drgona · Juan Gomez-Romero · Ashish Kapoor · Dylan J Fitzpatrick · Alireza Rezvanifar · Adrian Albert · Olya (Olga) Irzak · Kara Lamb · Ankur Mahesh · Kiwan Maeng · Frederik Kratzert · Sorelle Friedler · Niccolo Dalmasso · Alex Robson · Lindiwe Malobola · Lucas Maystre · Yu-wen Lin · Surya Karthik Mukkavili · Brian Hutchinson · Alexandre Lacoste · Yanbing Wang · Zhengcheng Wang · Yinda Zhang · Victoria Preston · Jacob Pettit · Draguna Vrabie · Miguel Molina-Solana · Tonio Buonassisi · Andrew Annex · Tunai P Marques · Catalin Voss · Johannes Rausch · Max Evans
  • 2019 : Morning Coffee Break & Poster Session »
    Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger
  • 2019 : Poster Spotlight 1 »
    David Brandfonbrener · Joan Bruna · Tom Zahavy · Haim Kaplan · Yishay Mansour · Nikos Karampatziakis · John Langford · Paul Mineiro · Donghwan Lee · Niao He
  • 2019 Workshop: Joint Workshop on AI for Social Good »
    Fei Fang · Joseph Aylett-Bullock · Marc-Antoine Dilhac · Brian Green · natalie saltiel · Dhaval Adjodah · Jack Clark · Sean McGregor · Margaux Luck · Jonathan Penn · Tristan Sylvain · Geneviève Boucher · Sydney Swaine-Simon · Girmaw Abebe Tadesse · Myriam Côté · Anna Bethke · Yoshua Bengio
  • 2019 Poster: Large Scale Structure of Neural Network Loss Landscapes »
    Stanislav Fort · Stanislaw Jastrzebski
  • 2018 Workshop: AI for social good »
    Margaux Luck · Tristan Sylvain · Joseph Paul Cohen · Arsene Fansi Tchango · Valentine Goddard · Aurelie Helouis · Yoshua Bengio · Sam Greydanus · Cody Wild · Taras Kucherenko · Arya Farahi · Jonathan Penn · Sean McGregor · Mark Crowley · Abhishek Gupta · Kenny Chen · Myriam Côté · Rediet Abebe
  • 2018 Workshop: Wordplay: Reinforcement and Language Learning in Text-based Games »
    Adam Trischler · Angeliki Lazaridou · Yonatan Bisk · Wendy Tay · Nate Kushman · Marc-Alexandre Côté · Alessandro Sordoni · Daniel Ricks · Tom Zahavy · Hal Daumé III
  • 2018 Poster: Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning »
    Tom Zahavy · Matan Haroush · Nadav Merlis · Daniel J Mankowitz · Shie Mannor
  • 2017 : Contributed talk 5: Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation with Real LIGO Data »
    Daniel George
  • 2017 : Poster session 1 and coffee break »
    Tobias Hagge · Sean McGregor · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy
  • 2017 : AI XPRIZE Milestone award »
    Amir Banifatemi · rania khalaf · Sean McGregor
  • 2017 Poster: Shallow Updates for Deep Reinforcement Learning »
    Nir Levine · Tom Zahavy · Daniel J Mankowitz · Aviv Tamar · Shie Mannor
  • 2015 : Jet Images »
    Luke P. de Oliveira
  • 2014 Workshop: High-energy particle physics, machine learning, and the HiggsML data challenge (HEPML) »
    Glen Cowan · Balázs Kégl · Kyle Cranmer · Gábor Melis · Tim Salimans · Vladimir Vava Gligorov · Daniel Whiteson · Lester Mackey · Wojciech Kotlowski · Roberto Díaz Morales · Pierre Baldi · Cecile Germain · David Rousseau · Isabelle Guyon · Tianqi Chen