Timezone: »
Convolutional neural networks are increasingly used outside the domain of image analysis, in particular in various areas of the Natural Sciences concerned with spatial data. Such networks often work out-of-the box, and in some cases entire model architectures from image analysis can be carried over to other problem domains almost unaltered. Unfortunately, this convenience does not trivially extend to data in non-euclidean spaces, such as spherical data. In this paper, we address the challenges that arise in this setting, in particular the lack of translational equivariance associated with using a grid based on uniform spacing in spherical coordinates. We present a definition of a spherical convolution that overcomes these issues, and extend our discussion to include scenarios of spherical volumes, with several strategies for parameterizing the radial dimension. As a proof of concept, we conclude with an assessment of the performance of spherical convolutions in the context of molecular modelling, by considering structural environments within proteins. We show that the model is capable of learning non-trivial functions in these molecular environments, and despite the lack of any domain specific feature-engineering, we demonstrate performance comparable to state-of-the-art methods in the field, which build on decades of domain-specific knowledge.
Author Information
Wouter Boomsma (University of Copenhagen)
Jes Frellsen (IT University of Copenhagen)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Spherical convolutions and their application in molecular modelling »
Thu. Dec 7th 02:30 -- 06:30 AM Room Pacific Ballroom #131
More from the Same Authors
-
2021 : A kernel for continuously relaxed, discrete Bayesian optimization of protein sequences »
Yevgen Zainchkovskyy · Simon Bartels · Søren Hauberg · Jes Frellsen · Wouter Boomsma -
2022 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Alex X Lu · Anshul Kundaje · Chang Liu · Debora Marks · Ed Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Rebecca Boiarsky · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang · Stephen Ra -
2021 Workshop: Learning Meaningful Representations of Life (LMRL) »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Anshul Kundaje · Barbara Engelhardt · Chang Liu · David Van Valen · Debora Marks · Edward Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang -
2021 Workshop: Machine Learning in Structural Biology »
Ellen Zhong · Raphael Townshend · Stephan Eismann · Namrata Anand · Roshan Rao · John Ingraham · Wouter Boomsma · Sergey Ovchinnikov · Bonnie Berger -
2020 : Frank Noe Intro »
Wouter Boomsma -
2020 Workshop: Machine Learning for Structural Biology »
Raphael Townshend · Stephan Eismann · Ron Dror · Ellen Zhong · Namrata Anand · John Ingraham · Wouter Boomsma · Sergey Ovchinnikov · Roshan Rao · Per Greisen · Rachel Kolodny · Bonnie Berger -
2020 Workshop: Learning Meaningful Representations of Life (LMRL.org) »
Elizabeth Wood · Debora Marks · Ray Jones · Adji Bousso Dieng · Alan Aspuru-Guzik · Anshul Kundaje · Barbara Engelhardt · Chang Liu · Edward Boyden · Kresten Lindorff-Larsen · Mor Nitzan · Smita Krishnaswamy · Wouter Boomsma · Yixin Wang · David Van Valen · Orr Ashenberg -
2018 Poster: 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data »
Maurice Weiler · Wouter Boomsma · Mario Geiger · Max Welling · Taco Cohen