Timezone: »
Calcium imaging permits optical measurement of neural activity. Since intracellular calcium concentration is an indirect measurement of neural activity, computational tools are necessary to infer the true underlying spiking activity from fluorescence measurements. Bayesian model inversion can be used to solve this problem, but typically requires either computationally expensive MCMC sampling, or faster but approximate maximum-a-posteriori optimization. Here, we introduce a flexible algorithmic framework for fast, efficient and accurate extraction of neural spikes from imaging data. Using the framework of variational autoencoders, we propose to amortize inference by training a deep neural network to perform model inversion efficiently. The recognition network is trained to produce samples from the posterior distribution over spike trains. Once trained, performing inference amounts to a fast single forward pass through the network, without the need for iterative optimization or sampling. We show that amortization can be applied flexibly to a wide range of nonlinear generative models and significantly improves upon the state of the art in computation time, while achieving competitive accuracy. Our framework is also able to represent posterior distributions over spike-trains. We demonstrate the generality of our method by proposing the first probabilistic approach for separating backpropagating action potentials from putative synaptic inputs in calcium imaging of dendritic spines.
Author Information
Artur Speiser (research center caesar, an associate of the Max Planck Society)
Jinyao Yan (Janelia Research Campus)
Evan Archer (Sony AI)
Lars Buesing (DeepMind)
Srinivas C Turaga (Janelia Research Campus, Howard Hughes Medical Institute)
Jakob H Macke (research center caesar, an associate of the Max Planck Society)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Fast amortized inference of neural activity from calcium imaging data with variational autoencoders »
Thu. Dec 7th 02:30 -- 06:30 AM Room Pacific Ballroom #144
More from the Same Authors
-
2023 Poster: Generalized Bayesian Inference for Scientific Simulators via Amortized Cost Estimation »
Richard Gao · Michael Deistler · Jakob H Macke -
2023 Poster: Meta-learning families of plasticity rules in recurrent spiking networks using simulation-based inference »
Basile Confavreux · Poornima Ramesh · Pedro Goncalves · Jakob H Macke · Tim Vogels -
2023 Poster: Flow Matching for Scalable Simulation-Based Inference »
Jonas Wildberger · Maximilian Dax · Simon Buchholz · Stephen Green · Jakob H Macke · Bernhard Schölkopf -
2022 Poster: FourierNets enable the design of highly non-local optical encoders for computational imaging »
Diptodip Deb · Zhenfei Jiao · Ruth Sims · Alex Chen · Michael Broxton · Misha B Ahrens · Kaspar Podgorski · Srinivas C Turaga -
2022 Poster: Truncated proposals for scalable and hassle-free simulation-based inference »
Michael Deistler · Pedro Goncalves · Jakob H Macke -
2022 Poster: Efficient identification of informative features in simulation-based inference »
Jonas Beck · Michael Deistler · Yves Bernaerts · Jakob H Macke · Philipp Berens -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 Poster: Intrinsic dimension of data representations in deep neural networks »
Alessio Ansuini · Alessandro Laio · Jakob H Macke · Davide Zoccolan -
2017 Oral: Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit »
Laurence Aitchison · Lloyd Russell · Adam Packer · Jinyao Yan · Philippe Castonguay · Michael Hausser · Srinivas C Turaga -
2017 Poster: Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit »
Laurence Aitchison · Lloyd Russell · Adam Packer · Jinyao Yan · Philippe Castonguay · Michael Hausser · Srinivas C Turaga -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: Extracting low-dimensional dynamics from multiple large-scale neural population recordings by learning to predict correlations »
Marcel Nonnenmacher · Srinivas C Turaga · Jakob H Macke -
2017 Poster: Flexible statistical inference for mechanistic models of neural dynamics »
Jan-Matthis Lueckmann · Pedro Goncalves · Giacomo Bassetto · Kaan Öcal · Marcel Nonnenmacher · Jakob H Macke -
2016 : From Brains to Bits and Back Again »
Yoshua Bengio · Terrence Sejnowski · Christos H Papadimitriou · Jakob H Macke · Demis Hassabis · Alyson Fletcher · Andreas Tolias · Jascha Sohl-Dickstein · Konrad P Koerding -
2016 Workshop: Connectomics II: Opportunities and Challenges for Machine Learning »
Viren Jain · Srinivas C Turaga -
2016 : Srini Turaga : Independence testing & Amortized inference, with neural networks, for neuroscience »
Srinivas C Turaga -
2016 Workshop: Brains and Bits: Neuroscience meets Machine Learning »
Alyson Fletcher · Eva Dyer · Jascha Sohl-Dickstein · Joshua T Vogelstein · Konrad Koerding · Jakob H Macke -
2015 : Correlations and Signatures of Criticality in Neural Population Models »
Jakob H Macke -
2015 Workshop: Statistical Methods for Understanding Neural Systems »
Alyson Fletcher · Jakob H Macke · Ryan Adams · Jascha Sohl-Dickstein -
2015 Poster: Bayesian Manifold Learning: The Locally Linear Latent Variable Model (LL-LVM) »
Mijung Park · Wittawat Jitkrittum · Ahmad Qamar · Zoltan Szabo · Lars Buesing · Maneesh Sahani -
2015 Poster: Unlocking neural population non-stationarities using hierarchical dynamics models »
Mijung Park · Gergo Bohner · Jakob H Macke -
2014 Workshop: Large scale optical physiology: From data-acquisition to models of neural coding »
Il Memming Park · Jakob H Macke · Ferran Diego Andilla · Eftychios Pnevmatikakis · Jeremy Freeman -
2014 Poster: A Bayesian model for identifying hierarchically organised states in neural population activity »
Patrick Putzky · Florian Franzen · Giacomo Bassetto · Jakob H Macke -
2014 Spotlight: A Bayesian model for identifying hierarchically organised states in neural population activity »
Patrick Putzky · Florian Franzen · Giacomo Bassetto · Jakob H Macke -
2014 Poster: Low-dimensional models of neural population activity in sensory cortical circuits »
Evan Archer · Urs Koster · Jonathan W Pillow · Jakob H Macke -
2013 Workshop: Acquiring and Analyzing the Activity of Large Neural Ensembles »
Srinivas C Turaga · Lars Buesing · Maneesh Sahani · Jakob H Macke -
2013 Poster: Inferring neural population dynamics from multiple partial recordings of the same neural circuit »
Srinivas C Turaga · Lars Buesing · Adam M Packer · Henry Dalgleish · Noah Pettit · Michael Hausser · Jakob H Macke -
2013 Spotlight: Inferring neural population dynamics from multiple partial recordings of the same neural circuit »
Srinivas C Turaga · Lars Buesing · Adam M Packer · Henry Dalgleish · Noah Pettit · Michael Hausser · Jakob H Macke -
2012 Poster: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2012 Oral: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2011 Oral: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Learning to Agglomerate Superpixel Hierarchies »
Viren Jain · Srinivas C Turaga · K Briggman · Moritz N Helmstaedter · Winfried Denk · H. Sebastian Seung -
2011 Poster: How biased are maximum entropy models? »
Jakob H Macke · Iain Murray · Peter E Latham -
2009 Poster: Maximin affinity learning of image segmentation »
Srinivas C Turaga · K Briggman · Moritz N Helmstaedter · Winfried Denk · H. Sebastian Seung -
2009 Poster: Bayesian estimation of orientation preference maps »
Jakob H Macke · Sebastian Gerwinn · Leonard White · Matthias Kaschube · Matthias Bethge -
2007 Oral: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Poster: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Poster: Receptive Fields without Spike-Triggering »
Jakob H Macke · Günther Zeck · Matthias Bethge -
2006 Poster: Inducing Metric Violations in Human Similarity Judgements »
Julian Laub · Jakob H Macke · Klaus-Robert Müller · Felix A Wichmann