Timezone: »
In large part, rodents “see” the world through their whiskers, a powerful tactile sense enabled by a series of brain areas that form the whisker-trigeminal system. Raw sensory data arrives in the form of mechanical input to the exquisitely sensitive, actively-controllable whisker array, and is processed through a sequence of neural circuits, eventually arriving in cortical regions that communicate with decision making and memory areas. Although a long history of experimental studies has characterized many aspects of these processing stages, the computational operations of the whisker-trigeminal system remain largely unknown. In the present work, we take a goal-driven deep neural network (DNN) approach to modeling these computations. First, we construct a biophysically-realistic model of the rat whisker array. We then generate a large dataset of whisker sweeps across a wide variety of 3D objects in highly-varying poses, angles, and speeds. Next, we train DNNs from several distinct architectural families to solve a shape recognition task in this dataset. Each architectural family represents a structurally-distinct hypothesis for processing in the whisker-trigeminal system, corresponding to different ways in which spatial and temporal information can be integrated. We find that most networks perform poorly on the challenging shape recognition task, but that specific architectures from several families can achieve reasonable performance levels. Finally, we show that Representational Dissimilarity Matrices (RDMs), a tool for comparing population codes between neural systems, can separate these higher performing networks with data of a type that could plausibly be collected in a neurophysiological or imaging experiment. Our results are a proof-of-concept that DNN models of the whisker-trigeminal system are potentially within reach.
Author Information
Chengxu Zhuang (Stanford University)
Jonas Kubilius (Massachusetts Institute of Technology)
Mitra JZ Hartmann (Northwestern University)
Dr. Mitra Hartmann is a Professor at Northwestern University with a 50-50 joint appointment between the departments of Biomedical Engineering and Mechanical Engineering. She received a Bachelor of Science in Applied and Engineering Physics from Cornell University, and a PhD in Integrative Neuroscience from the California Institute of Technology. She was a postdoctoral scholar at the Jet Propulsion Laboratory in Pasadena, California in the Bio-Inspired Technology and Systems group, and joined the faculty at Northwestern in 2003.
Daniel Yamins (Stanford University)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Toward Goal-Driven Neural Network Models for the Rodent Whisker-Trigeminal System »
Thu. Dec 7th 02:30 -- 06:30 AM Room Pacific Ballroom #143
More from the Same Authors
-
2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins -
2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins -
2020 Poster: Identifying Learning Rules From Neural Network Observables »
Aran Nayebi · Sanjana Srivastava · Surya Ganguli · Daniel Yamins -
2020 Spotlight: Identifying Learning Rules From Neural Network Observables »
Aran Nayebi · Sanjana Srivastava · Surya Ganguli · Daniel Yamins -
2020 Poster: Learning Physical Graph Representations from Visual Scenes »
Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins -
2020 Poster: Pruning neural networks without any data by iteratively conserving synaptic flow »
Hidenori Tanaka · Daniel Kunin · Daniel Yamins · Surya Ganguli -
2020 Oral: Learning Physical Graph Representations from Visual Scenes »
Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins -
2019 Poster: Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs »
Jonas Kubilius · Martin Schrimpf · Kohitij Kar · Rishi Rajalingham · Ha Hong · Najib Majaj · Elias Issa · Pouya Bashivan · Jonathan Prescott-Roy · Kailyn Schmidt · Aran Nayebi · Daniel Bear · Daniel Yamins · James J DiCarlo -
2019 Oral: Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs »
Jonas Kubilius · Martin Schrimpf · Ha Hong · Najib Majaj · Rishi Rajalingham · Elias Issa · Kohitij Kar · Pouya Bashivan · Jonathan Prescott-Roy · Kailyn Schmidt · Aran Nayebi · Daniel Bear · Daniel Yamins · James J DiCarlo -
2018 : Talk 6: Dan Yamins - The Objects of Our Curiosity: Intrinsic Motivation, Intuitive Physics and Self-Supervised Learning »
Daniel Yamins -
2018 Poster: Learning to Play With Intrinsically-Motivated, Self-Aware Agents »
Nick Haber · Damian Mrowca · Stephanie Wang · Li Fei-Fei · Daniel Yamins -
2018 Poster: Task-Driven Convolutional Recurrent Models of the Visual System »
Aran Nayebi · Daniel Bear · Jonas Kubilius · Kohitij Kar · Surya Ganguli · David Sussillo · James J DiCarlo · Daniel Yamins -
2018 Poster: Flexible neural representation for physics prediction »
Damian Mrowca · Chengxu Zhuang · Elias Wang · Nick Haber · Li Fei-Fei · Josh Tenenbaum · Daniel Yamins -
2013 Poster: Hierarchical Modular Optimization of Convolutional Networks Achieves Representations Similar to Macaque IT and Human Ventral Stream »
Daniel L Yamins · Ha Hong · Charles Cadieu · James J DiCarlo -
2009 Invited Talk: The Rat Vibrissal Array as a Model Sensorimotor System »
Mitra Hartmann