Timezone: »
We introduce deep neural networks for end-to-end differentiable theorem proving that operate on dense vector representations of symbols. These neural networks are recursively constructed by following the backward chaining algorithm as used in Prolog. Specifically, we replace symbolic unification with a differentiable computation on vector representations of symbols using a radial basis function kernel, thereby combining symbolic reasoning with learning subsymbolic vector representations. The resulting neural network can be trained to infer facts from a given incomplete knowledge base using gradient descent. By doing so, it learns to (i) place representations of similar symbols in close proximity in a vector space, (ii) make use of such similarities to prove facts, (iii) induce logical rules, and (iv) it can use provided and induced logical rules for complex multi-hop reasoning. On four benchmark knowledge bases we demonstrate that this architecture outperforms ComplEx, a state-of-the-art neural link prediction model, while at the same time inducing interpretable function-free first-order logic rules.
Author Information
Tim Rocktäschel (University of Oxford)
Tim is a Researcher at Facebook AI Research (FAIR) London, an Associate Professor at the Centre for Artificial Intelligence in the Department of Computer Science at University College London (UCL), and a Scholar of the European Laboratory for Learning and Intelligent Systems (ELLIS). Prior to that, he was a Postdoctoral Researcher in Reinforcement Learning at the University of Oxford, a Junior Research Fellow in Computer Science at Jesus College, and a Stipendiary Lecturer in Computer Science at Hertford College. Tim obtained his Ph.D. from UCL under the supervision of Sebastian Riedel, and he was awarded a Microsoft Research Ph.D. Scholarship in 2013 and a Google Ph.D. Fellowship in 2017. His work focuses on reinforcement learning in open-ended environments that require intrinsically motivated agents capable of transferring commonsense, world and domain knowledge in order to systematically generalize to novel situations.
Sebastian Riedel (University College London)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: End-to-End Differentiable Proving »
Thu. Dec 7th 02:30 -- 06:30 AM Room Pacific Ballroom #128
More from the Same Authors
-
2022 : Efficient Planning in a Compact Latent Action Space »
zhengyao Jiang · Tianjun Zhang · Michael Janner · Yueying (Lisa) Li · Tim Rocktäschel · Edward Grefenstette · Yuandong Tian -
2022 : MAESTRO: Open-Ended Environment Design for Multi-Agent Reinforcement Learning »
Mikayel Samvelyan · Akbir Khan · Michael Dennis · Minqi Jiang · Jack Parker-Holder · Jakob Foerster · Roberta Raileanu · Tim Rocktäschel -
2022 Poster: Autoregressive Search Engines: Generating Substrings as Document Identifiers »
Michele Bevilacqua · Giuseppe Ottaviano · Patrick Lewis · Scott Yih · Sebastian Riedel · Fabio Petroni -
2022 Poster: Dungeons and Data: A Large-Scale NetHack Dataset »
Eric Hambro · Roberta Raileanu · Danielle Rothermel · Vegard Mella · Tim Rocktäschel · Heinrich Küttler · Naila Murray -
2022 Poster: Learning General World Models in a Handful of Reward-Free Deployments »
Yingchen Xu · Jack Parker-Holder · Aldo Pacchiano · Philip Ball · Oleh Rybkin · S Roberts · Tim Rocktäschel · Edward Grefenstette -
2022 Poster: ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective »
Yihong Chen · Pushkar Mishra · Luca Franceschi · Pasquale Minervini · Pontus Lars Erik Saito Stenetorp · Sebastian Riedel -
2022 Poster: Grounding Aleatoric Uncertainty for Unsupervised Environment Design »
Minqi Jiang · Michael Dennis · Jack Parker-Holder · Andrei Lupu · Heinrich Küttler · Edward Grefenstette · Tim Rocktäschel · Jakob Foerster -
2022 Poster: Improving Policy Learning via Language Dynamics Distillation »
Victor Zhong · Jesse Mu · Luke Zettlemoyer · Edward Grefenstette · Tim Rocktäschel -
2022 Poster: Exploration via Elliptical Episodic Bonuses »
Mikael Henaff · Roberta Raileanu · Minqi Jiang · Tim Rocktäschel -
2022 Poster: GriddlyJS: A Web IDE for Reinforcement Learning »
Christopher Bamford · Minqi Jiang · Mikayel Samvelyan · Tim Rocktäschel -
2022 Poster: Improving Intrinsic Exploration with Language Abstractions »
Jesse Mu · Victor Zhong · Roberta Raileanu · Minqi Jiang · Noah Goodman · Tim Rocktäschel · Edward Grefenstette -
2021 : The NetHack Challenge + Q&A »
Eric Hambro · Sharada Mohanty · Dipam Chakrabroty · Edward Grefenstette · Minqi Jiang · Robert Kirk · Vitaly Kurin · Heinrich Kuttler · Vegard Mella · Nantas Nardelli · Jack Parker-Holder · Roberta Raileanu · Tim Rocktäschel · Danielle Rothermel · Mikayel Samvelyan -
2020 Poster: The NetHack Learning Environment »
Heinrich Küttler · Nantas Nardelli · Alexander Miller · Roberta Raileanu · Marco Selvatici · Edward Grefenstette · Tim Rocktäschel -
2018 Poster: e-SNLI: Natural Language Inference with Natural Language Explanations »
Oana-Maria Camburu · Tim Rocktäschel · Thomas Lukasiewicz · Phil Blunsom -
2017 Workshop: Workshop on Prioritising Online Content »
John Shawe-Taylor · Massimiliano Pontil · Nicolò Cesa-Bianchi · Emine Yilmaz · Chris Watkins · Sebastian Riedel · Marko Grobelnik -
2017 : Reading and Reasoning with Neural Program Interpreters »
Sebastian Riedel -
2017 Workshop: 6th Workshop on Automated Knowledge Base Construction (AKBC) »
Jay Pujara · Dor Arad · Bhavana Dalvi Mishra · Tim Rocktäschel -
2016 Workshop: Neural Abstract Machines & Program Induction »
Matko Bošnjak · Nando de Freitas · Tejas Kulkarni · Arvind Neelakantan · Scott E Reed · Sebastian Riedel · Tim Rocktäschel -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Workshop: 4th Workshop on Automated Knowledge Base Construction (AKBC) »
Sameer Singh · Fabian M Suchanek · Sebastian Riedel · Partha Pratim Talukdar · Kevin Murphy · Christopher Ré · William Cohen · Tom Mitchell · Andrew McCallum · Jason E Weston · Ramanathan Guha · Boyan Onyshkevych · Hoifung Poon · Oren Etzioni · Ari Kobren · Arvind Neelakantan · Peter Clark -
2014 Demonstration: A Visual and Interactive IDE for Probabilistic Programming »
Sameer Singh · Luke Hewitt · Tim Rocktäschel · Sebastian Riedel