Timezone: »
Oral
Communication-Efficient Distributed Learning of Discrete Distributions
Ilias Diakonikolas · Elena Grigorescu · Jerry Li · Abhiram Natarajan · Krzysztof Onak · Ludwig Schmidt
We initiate a systematic study of distribution learning (or density estimation) in the distributed model. In this problem the data drawn from an unknown distribution is partitioned across multiple machines. The machines must succinctly communicate with a referee so that in the end the referee can estimate the underlying distribution of the data. The problem is motivated by the pressing need to build communication-efficient protocols in various distributed systems, where power consumption or limited bandwidth impose stringent communication constraints. We give the first upper and lower bounds on the communication complexity of nonparametric density estimation of discrete probability distributions under both l1 and the l2 distances. Specifically, our results include the following: 1. In the case when the unknown distribution is arbitrary and each machine has only one sample, we show that any interactive protocol that learns the distribution must essentially communicate the entire sample. 2. In the case of structured distributions, such as $k$-histograms and monotone, we design distributed protocols that achieve better communication guarantees than the trivial ones, and show tight bounds in some regimes.
Author Information
Ilias Diakonikolas (USC)
Elena Grigorescu (Purdue University)
Jerry Li (Berkeley)
Abhiram Natarajan (Purdue University)
Krzysztof Onak (IBM T.J. Watson Research Center)
Ludwig Schmidt (MIT)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Communication-Efficient Distributed Learning of Discrete Distributions »
Wed. Dec 6th 02:30 -- 06:30 AM Room Pacific Ballroom #61
More from the Same Authors
-
2022 Spotlight: Lightning Talks 4A-2 »
Barakeel Fanseu Kamhoua · Hualin Zhang · Taiki Miyagawa · Tomoya Murata · Xin Lyu · Yan Dai · Elena Grigorescu · Zhipeng Tu · Lijun Zhang · Taiji Suzuki · Wei Jiang · Haipeng Luo · Lin Zhang · Xi Wang · Young-San Lin · Huan Xiong · Liyu Chen · Bin Gu · Jinfeng Yi · Yongqiang Chen · Sandeep Silwal · Yiguang Hong · Maoyuan Song · Lei Wang · Tianbao Yang · Han Yang · MA Kaili · Samson Zhou · Deming Yuan · Bo Han · Guodong Shi · Bo Li · James Cheng -
2022 Spotlight: Learning-Augmented Algorithms for Online Linear and Semidefinite Programming »
Elena Grigorescu · Young-San Lin · Sandeep Silwal · Maoyuan Song · Samson Zhou -
2022 Poster: Learning-Augmented Algorithms for Online Linear and Semidefinite Programming »
Elena Grigorescu · Young-San Lin · Sandeep Silwal · Maoyuan Song · Samson Zhou -
2018 Poster: Byzantine Stochastic Gradient Descent »
Dan Alistarh · Zeyuan Allen-Zhu · Jerry Li -
2018 Poster: Spectral Signatures in Backdoor Attacks »
Brandon Tran · Jerry Li · Aleksander Madry -
2018 Poster: Adversarially Robust Generalization Requires More Data »
Ludwig Schmidt · Shibani Santurkar · Dimitris Tsipras · Kunal Talwar · Aleksander Madry -
2018 Spotlight: Adversarially Robust Generalization Requires More Data »
Ludwig Schmidt · Shibani Santurkar · Dimitris Tsipras · Kunal Talwar · Aleksander Madry -
2017 Workshop: Deep Learning: Bridging Theory and Practice »
Sanjeev Arora · Maithra Raghu · Russ Salakhutdinov · Ludwig Schmidt · Oriol Vinyals -
2017 Poster: QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding »
Dan Alistarh · Demjan Grubic · Jerry Li · Ryota Tomioka · Milan Vojnovic -
2017 Spotlight: Communication-Efficient Stochastic Gradient Descent, with Applications to Neural Networks »
Dan Alistarh · Demjan Grubic · Jerry Li · Ryota Tomioka · Milan Vojnovic -
2017 Poster: On the Fine-Grained Complexity of Empirical Risk Minimization: Kernel Methods and Neural Networks »
Arturs Backurs · Piotr Indyk · Ludwig Schmidt -
2016 Poster: Fast recovery from a union of subspaces »
Chinmay Hegde · Piotr Indyk · Ludwig Schmidt -
2015 Poster: Practical and Optimal LSH for Angular Distance »
Alexandr Andoni · Piotr Indyk · Thijs Laarhoven · Ilya Razenshteyn · Ludwig Schmidt -
2015 Poster: Differentially Private Learning of Structured Discrete Distributions »
Ilias Diakonikolas · Moritz Hardt · Ludwig Schmidt