Timezone: »
Spotlight
Multiplicative Weights Update with Constant Step-Size in Congestion Games: Convergence, Limit Cycles and Chaos
Gerasimos Palaiopanos · Ioannis Panageas · Georgios Piliouras
The Multiplicative Weights Update (MWU) method is a ubiquitous meta-algorithm that works as follows: A distribution is maintained on a certain set, and at each step the probability assigned to action $\gamma$ is multiplied by $(1 -\epsilon C(\gamma))>0$ where $C(\gamma)$ is the ``cost" of action $\gamma$ and then rescaled to ensure that the new values form a distribution. We analyze MWU in congestion games where agents use \textit{arbitrary admissible constants} as learning rates $\epsilon$ and prove convergence to \textit{exact Nash equilibria}. Interestingly, this convergence result does not carry over to the nearly homologous MWU variant where at each step the probability assigned to action $\gamma$ is multiplied by $(1 -\epsilon)^{C(\gamma)}$ even for the most innocuous case of two-agent, two-strategy load balancing games, where such dynamics can provably lead to limit cycles or even chaotic behavior.
Author Information
Gerasimos Palaiopanos (SUTD)
Ioannis Panageas (Singapore University of Technology and Design)
Georgios Piliouras (Singapore University of Technology and Design)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Multiplicative Weights Update with Constant Step-Size in Congestion Games: Convergence, Limit Cycles and Chaos »
Wed. Dec 6th 02:30 -- 06:30 AM Room Pacific Ballroom #224
More from the Same Authors
-
2021 Spotlight: Exploration-Exploitation in Multi-Agent Competition: Convergence with Bounded Rationality »
Stefanos Leonardos · Georgios Piliouras · Kelly Spendlove -
2021 : Learning in Matrix Games can be Arbitrarily Complex »
Gabriel Andrade · Rafael Frongillo · Georgios Piliouras -
2021 : Global Convergence of Multi-Agent Policy Gradient in Markov Potential Games »
Stefanos Leonardos · Will Overman · Ioannis Panageas · Georgios Piliouras -
2021 : Exploration-Exploitation in Multi-Agent Competition: Convergence with Bounded Rationality »
Stefanos Leonardos · Kelly Spendlove · Georgios Piliouras -
2021 : Learning in Matrix Games can be Arbitrarily Complex »
Gabriel Andrade · Rafael Frongillo · Georgios Piliouras -
2021 : Global Convergence of Multi-Agent Policy Gradient in Markov Potential Games »
Stefanos Leonardos · Will Overman · Ioannis Panageas · Georgios Piliouras -
2021 : Exploration-Exploitation in Multi-Agent Competition: Convergence with Bounded Rationality »
Stefanos Leonardos · Kelly Spendlove · Georgios Piliouras -
2023 Poster: The Best of Both Worlds in Network Population Games: Reaching Consensus and Convergence to Equilibrium »
Shuyue Hu · Harold Soh · Georgios Piliouras -
2023 Poster: Alternation makes the adversary weaker in two-player games »
Volkan Cevher · Ashok Cutkosky · Ali Kavis · Georgios Piliouras · Stratis Skoulakis · Luca Viano -
2023 Poster: Exploiting hidden structures in non-convex games for convergence to Nash equilibrium »
Iosif Sakos · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Panayotis Mertikopoulos · Georgios Piliouras -
2022 Poster: Alternating Mirror Descent for Constrained Min-Max Games »
Andre Wibisono · Molei Tao · Georgios Piliouras -
2022 Poster: Beyond Time-Average Convergence: Near-Optimal Uncoupled Online Learning via Clairvoyant Multiplicative Weights Update »
Georgios Piliouras · Ryann Sim · Stratis Skoulakis -
2022 Poster: Matrix Multiplicative Weights Updates in Quantum Zero-Sum Games: Conservation Laws & Recurrence »
Rahul Jain · Georgios Piliouras · Ryann Sim -
2021 Poster: Solving Min-Max Optimization with Hidden Structure via Gradient Descent Ascent »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Georgios Piliouras -
2021 Poster: Exploration-Exploitation in Multi-Agent Competition: Convergence with Bounded Rationality »
Stefanos Leonardos · Georgios Piliouras · Kelly Spendlove -
2021 Poster: Online Learning in Periodic Zero-Sum Games »
Tanner Fiez · Ryann Sim · Stratis Skoulakis · Georgios Piliouras · Lillian Ratliff -
2019 Poster: First-order methods almost always avoid saddle points: The case of vanishing step-sizes »
Ioannis Panageas · Georgios Piliouras · Xiao Wang -
2019 Poster: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2019 Spotlight: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2018 Poster: The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization »
Constantinos Daskalakis · Ioannis Panageas