Timezone: »
People often learn from others' demonstrations, and classic inverse reinforcement learning (IRL) algorithms have brought us closer to realizing this capacity in machines. In contrast, teaching by demonstration has been less well studied computationally. Here, we develop a novel Bayesian model for teaching by demonstration. Stark differences arise when demonstrators are intentionally teaching a task versus simply performing a task. In two experiments, we show that human participants systematically modify their teaching behavior consistent with the predictions of our model. Further, we show that even standard IRL algorithms benefit when learning from behaviors that are intentionally pedagogical. We conclude by discussing IRL algorithms that can take advantage of intentional pedagogy.
Author Information
Mark Ho (Brown University)
Michael Littman (Brown University)
James MacGlashan (Brown University)
Fiery Cushman (Harvard University)
Fiery Cushman is Assistant Professor of Psychology at Harvard University, where he directs the Moral Psychology Research Laboratory. His research investigates the cognitive mechanisms responsible for human moral judgment, along with their development, evolutionary history and neural basis. His work often draws from classic philosophical dilemmas, and has focused in particular on the psychology of punishment and the aversion to harmful action. He received his BA and PhD from Harvard University, where he also completed a post-doctoral fellowship. He served as Assistant Professor of Cognitive, Linguistic and Psychological Sciences at Brown University from 2011 to 2014.
Joe Austerweil (University of Wisconsin-Madison)
Joseph L Austerweil (University of Wisconsin-Madison)
As a computational cognitive psychologist, my research program explores questions at the intersection of perception and higher-level cognition. I use recent advances in statistics and computer science to formulate ideal learner models to see how they solve these problems and then test the model predictions using traditional behavioral experimentation. Ideal learner models help us understand the knowledge people use to solve problems because such knowledge must be made explicit for the ideal learner model to successfully produce human behavior. This method yields novel machine learning methods and leads to the discovery of new psychological principles.
More from the Same Authors
-
2021 : Bayesian Exploration for Lifelong Reinforcement Learning »
Haotian Fu · Shangqun Yu · Michael Littman · George Konidaris -
2022 Spotlight: Evaluation beyond Task Performance: Analyzing Concepts in AlphaZero in Hex »
Charles Lovering · Jessica Forde · George Konidaris · Ellie Pavlick · Michael Littman -
2022 Poster: Faster Deep Reinforcement Learning with Slower Online Network »
Kavosh Asadi · Rasool Fakoor · Omer Gottesman · Taesup Kim · Michael Littman · Alexander Smola -
2022 Poster: Evaluation beyond Task Performance: Analyzing Concepts in AlphaZero in Hex »
Charles Lovering · Jessica Forde · George Konidaris · Ellie Pavlick · Michael Littman -
2022 Poster: Model-based Lifelong Reinforcement Learning with Bayesian Exploration »
Haotian Fu · Shangqun Yu · Michael Littman · George Konidaris -
2021 Poster: On the Expressivity of Markov Reward »
David Abel · Will Dabney · Anna Harutyunyan · Mark Ho · Michael Littman · Doina Precup · Satinder Singh -
2021 Oral: On the Expressivity of Markov Reward »
David Abel · Will Dabney · Anna Harutyunyan · Mark Ho · Michael Littman · Doina Precup · Satinder Singh -
2018 Poster: Learning Task Specifications from Demonstrations »
Marcell Vazquez-Chanlatte · Susmit Jha · Ashish Tiwari · Mark Ho · Sanjit Seshia -
2016 Workshop: The Future of Interactive Machine Learning »
Kory Mathewson @korymath · Kaushik Subramanian · Mark Ho · Robert Loftin · Joseph L Austerweil · Anna Harutyunyan · Doina Precup · Layla El Asri · Matthew Gombolay · Jerry Zhu · Sonia Chernova · Charles Isbell · Patrick M Pilarski · Weng-Keen Wong · Manuela Veloso · Julie A Shah · Matthew Taylor · Brenna Argall · Michael Littman -
2016 Oral: Showing versus doing: Teaching by demonstration »
Mark Ho · Michael Littman · James MacGlashan · Fiery Cushman · Joseph L Austerweil -
2013 Poster: Visual Concept Learning: Combining Machine Vision and Bayesian Generalization on Concept Hierarchies »
Yangqing Jia · Joshua T Abbott · Joseph L Austerweil · Tom Griffiths · Trevor Darrell -
2012 Poster: Human memory search as a random walk in a semantic network »
Joshua T Abbott · Joseph L Austerweil · Tom Griffiths -
2012 Spotlight: Human memory search as a random walk in a semantic network »
Joshua T Abbott · Joseph L Austerweil · Tom Griffiths -
2011 Poster: An ideal observer model for identifying the reference frame of objects »
Joseph L Austerweil · Abram Friesen · Tom Griffiths -
2010 Spotlight: Learning invariant features using the Transformed Indian Buffet Process »
Joseph L Austerweil · Tom Griffiths -
2010 Poster: Learning invariant features using the Transformed Indian Buffet Process »
Joseph L Austerweil · Tom Griffiths -
2008 Poster: Analyzing human feature learning as nonparametric Bayesian inference »
Joseph L Austerweil · Tom Griffiths -
2008 Spotlight: Analyzing human feature learning as nonparametric Bayesian inference »
Joseph L Austerweil · Tom Griffiths