Timezone: »
Example-based explanations are widely used in the effort to improve the interpretability of highly complex distributions. However, prototypes alone are rarely sufficient to represent the gist of the complexity. In order for users to construct better mental models and understand complex data distributions, we also need {\em criticism} to explain what are \textit{not} captured by prototypes. Motivated by the Bayesian model criticism framework, we develop \texttt{MMD-critic} which efficiently learns prototypes and criticism, designed to aid human interpretability. A human subject pilot study shows that the \texttt{MMD-critic} selects prototypes and criticism that are useful to facilitate human understanding and reasoning. We also evaluate the prototypes selected by \texttt{MMD-critic} via a nearest prototype classifier, showing competitive performance compared to baselines.
Author Information
Been Kim (Google Brain)
Sanmi Koyejo (UIUC)
Sanmi (Oluwasanmi) Koyejo an Assistant Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Koyejo's research interests are in the development and analysis of probabilistic and statistical machine learning techniques motivated by, and applied to various modern big data problems. He is particularly interested in the analysis of large scale neuroimaging data. Koyejo completed his Ph.D in Electrical Engineering at the University of Texas at Austin advised by Joydeep Ghosh, and completed postdoctoral research at Stanford University with a focus on developing Machine learning techniques for neuroimaging data. His postdoctoral research was primarily with Russell A. Poldrack and Pradeep Ravikumar. Koyejo has been the recipient of several awards including the outstanding NCE/ECE student award, a best student paper award from the conference on uncertainty in artificial intelligence (UAI) and a trainee award from the Organization for Human Brain Mapping (OHBM).
Rajiv Khanna (UT Austin)
More from the Same Authors
-
2020 Poster: CSER: Communication-efficient SGD with Error Reset »
Cong Xie · Shuai Zheng · Sanmi Koyejo · Indranil Gupta · Mu Li · Haibin Lin -
2020 Poster: Fairness with Overlapping Groups; a Probabilistic Perspective »
Forest Yang · Mouhamadou M Cisse · Sanmi Koyejo -
2020 Poster: Fair Performance Metric Elicitation »
Gaurush Hiranandani · Harikrishna Narasimhan · Sanmi Koyejo -
2019 Poster: Learning Sparse Distributions using Iterative Hard Thresholding »
Jacky Zhang · Rajiv Khanna · Anastasios Kyrillidis · Sanmi Koyejo -
2019 Poster: Multiclass Performance Metric Elicitation »
Gaurush Hiranandani · Shant Boodaghians · Ruta Mehta · Sanmi Koyejo -
2019 Tutorial: Representation Learning and Fairness »
Moustapha Cisse · Sanmi Koyejo -
2018 Poster: Boosting Black Box Variational Inference »
Francesco Locatello · Gideon Dresdner · Rajiv Khanna · Isabel Valera · Gunnar Raetsch -
2018 Spotlight: Boosting Black Box Variational Inference »
Francesco Locatello · Gideon Dresdner · Rajiv Khanna · Isabel Valera · Gunnar Raetsch -
2016 Workshop: Interpretable Machine Learning for Complex Systems »
Andrew Wilson · Been Kim · William Herlands -
2016 Oral: Examples are not enough, learn to criticize! Criticism for Interpretability »
Been Kim · Sanmi Koyejo · Rajiv Khanna -
2016 Poster: Generalized Correspondence-LDA Models (GC-LDA) for Identifying Functional Regions in the Brain »
Timothy Rubin · Sanmi Koyejo · Michael Jones · Tal Yarkoni -
2016 Poster: Preference Completion from Partial Rankings »
Suriya Gunasekar · Sanmi Koyejo · Joydeep Ghosh -
2015 Poster: Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction »
Been Kim · Julie A Shah · Finale Doshi-Velez -
2015 Poster: Consistent Multilabel Classification »
Oluwasanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: On Prior Distributions and Approximate Inference for Structured Variables »
Sanmi Koyejo · Rajiv Khanna · Joydeep Ghosh · Russell Poldrack -
2014 Poster: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Spotlight: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification »
Been Kim · Cynthia Rudin · Julie A Shah -
2014 Poster: Sparse Bayesian structure learning with dependent relevance determination prior »
Anqi Wu · Mijung Park · Sanmi Koyejo · Jonathan W Pillow