Timezone: »

Supervised Word Mover's Distance
Gao Huang · Chuan Guo · Matt J Kusner · Yu Sun · Fei Sha · Kilian Weinberger

Wed Dec 07 09:00 AM -- 12:30 PM (PST) @ Area 5+6+7+8 #191

Accurately measuring the similarity between text documents lies at the core of many real world applications of machine learning. These include web-search ranking, document recommendation, multi-lingual document matching, and article categorization. Recently, a new document metric, the word mover's distance (WMD), has been proposed with unprecedented results on kNN-based document classification. The WMD elevates high quality word embeddings to document metrics by formulating the distance between two documents as an optimal transport problem between the embedded words. However, the document distances are entirely unsupervised and lack a mechanism to incorporate supervision when available. In this paper we propose an efficient technique to learn a supervised metric, which we call the Supervised WMD (S-WMD) metric. Our algorithm learns document distances that measure the underlying semantic differences between documents by leveraging semantic differences between individual words discovered during supervised training. This is achieved with an linear transformation of the underlying word embedding space and tailored word-specific weights, learned to minimize the stochastic leave-one-out nearest neighbor classification error on a per-document level. We evaluate our metric on eight real-world text classification tasks on which S-WMD consistently outperforms almost all of our 26 competitive baselines.

Author Information

Gao Huang (Cornell University)
Chuan Guo (Cornell University)
Matt J Kusner (Washington University in St. Louis)
Yu Sun (Cornell University)
Fei Sha (University of Southern California)
Kilian Weinberger (Cornell University / ASAPP Research)

More from the Same Authors