Timezone: »
This paper deals with price optimization, which is to find the best pricing strategy that maximizes revenue or profit, on the basis of demand forecasting models. Though recent advances in regression technologies have made it possible to reveal price-demand relationship of a number of multiple products, most existing price optimization methods, such as mixed integer programming formulation, cannot handle tens or hundreds of products because of their high computational costs. To cope with this problem, this paper proposes a novel approach based on network flow algorithms. We reveal a connection between supermodularity of the revenue and cross elasticity of demand. On the basis of this connection, we propose an efficient algorithm that employs network flow algorithms. The proposed algorithm can handle hundreds or thousands of products, and returns an exact optimal solution under an assumption regarding cross elasticity of demand. Even in case in which the assumption does not hold, the proposed algorithm can efficiently find approximate solutions as good as can other state-of-the-art methods, as empirical results show.
Author Information
Shinji Ito (NEC Coorporation)
Ryohei Fujimaki (NEC Data Science Research Laboratories)
More from the Same Authors
-
2018 Poster: Regret Bounds for Online Portfolio Selection with a Cardinality Constraint »
Shinji Ito · Daisuke Hatano · Hanna Sumita · Akihiro Yabe · Takuro Fukunaga · Naonori Kakimura · Ken-Ichi Kawarabayashi -
2017 Poster: Efficient Sublinear-Regret Algorithms for Online Sparse Linear Regression with Limited Observation »
Shinji Ito · Daisuke Hatano · Hanna Sumita · Akihiro Yabe · Takuro Fukunaga · Naonori Kakimura · Ken-Ichi Kawarabayashi -
2017 Poster: Scalable Model Selection for Belief Networks »
Zhao Song · Yusuke Muraoka · Ryohei Fujimaki · Lawrence Carin -
2016 Oral: Large-Scale Price Optimization via Network Flow »
Shinji Ito · Ryohei Fujimaki -
2014 Poster: Exclusive Feature Learning on Arbitrary Structures via $\ell_{1,2}$-norm »
Deguang Kong · Ryohei Fujimaki · Ji Liu · Feiping Nie · Chris Ding -
2014 Poster: Partition-wise Linear Models »
Hidekazu Oiwa · Ryohei Fujimaki -
2013 Poster: Factorized Asymptotic Bayesian Inference for Latent Feature Models »
Kohei Hayashi · Ryohei Fujimaki