Timezone: »
Markov chain Monte Carlo (MCMC) is one of the main workhorses of probabilistic inference, but it is notoriously hard to measure the quality of approximate posterior samples. This challenge is particularly salient in black box inference methods, which can hide details and obscure inference failures. In this work, we extend the recently introduced bidirectional Monte Carlo technique to evaluate MCMC-based posterior inference algorithms. By running annealed importance sampling (AIS) chains both from prior to posterior and vice versa on simulated data, we upper bound in expectation the symmetrized KL divergence between the true posterior distribution and the distribution of approximate samples. We integrate our method into two probabilistic programming languages, WebPPL and Stan, and validate it on several models and datasets. As an example of how our method be used to guide the design of inference algorithms, we apply it to study the effectiveness of different model representations in WebPPL and Stan.
Author Information
Roger Grosse (University of Toronto)
Siddharth Ancha (University of Toronto)
Daniel Roy (U of Toronto; Vector)
More from the Same Authors
-
2021 Spotlight: Towards a Unified Information-Theoretic Framework for Generalization »
Mahdi Haghifam · Gintare Karolina Dziugaite · Shay Moran · Dan Roy -
2022 Poster: Amortized Proximal Optimization »
Juhan Bae · Paul Vicol · Jeff Z. HaoChen · Roger Grosse -
2022 Poster: Proximal Learning With Opponent-Learning Awareness »
Stephen Zhao · Chris Lu · Roger Grosse · Jakob Foerster -
2022 Poster: If Influence Functions are the Answer, Then What is the Question? »
Juhan Bae · Nathan Ng · Alston Lo · Marzyeh Ghassemi · Roger Grosse -
2022 Poster: Path Independent Equilibrium Models Can Better Exploit Test-Time Computation »
Cem Anil · Ashwini Pokle · Kaiqu Liang · Johannes Treutlein · Yuhuai Wu · Shaojie Bai · J. Zico Kolter · Roger Grosse -
2021 Poster: The future is log-Gaussian: ResNets and their infinite-depth-and-width limit at initialization »
Mufan Li · Mihai Nica · Dan Roy -
2021 Poster: Minimax Optimal Quantile and Semi-Adversarial Regret via Root-Logarithmic Regularizers »
Jeffrey Negrea · Blair Bilodeau · Nicolò Campolongo · Francesco Orabona · Dan Roy -
2021 Poster: Towards a Unified Information-Theoretic Framework for Generalization »
Mahdi Haghifam · Gintare Karolina Dziugaite · Shay Moran · Dan Roy -
2021 Poster: Differentiable Annealed Importance Sampling and the Perils of Gradient Noise »
Guodong Zhang · Kyle Hsu · Jianing Li · Chelsea Finn · Roger Grosse -
2020 : Invited Talk: Roger Grosse - Why Isn’t Everyone Using Second-Order Optimization? »
Roger Grosse -
2020 Poster: Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel »
Stanislav Fort · Gintare Karolina Dziugaite · Mansheej Paul · Sepideh Kharaghani · Daniel Roy · Surya Ganguli -
2020 Poster: Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians »
Juhan Bae · Roger Grosse -
2020 Poster: Adaptive Gradient Quantization for Data-Parallel SGD »
Fartash Faghri · Iman Tabrizian · Ilia Markov · Dan Alistarh · Daniel Roy · Ali Ramezani-Kebrya -
2020 Poster: Regularized linear autoencoders recover the principal components, eventually »
Xuchan Bao · James Lucas · Sushant Sachdeva · Roger Grosse -
2020 Poster: Sharpened Generalization Bounds based on Conditional Mutual Information and an Application to Noisy, Iterative Algorithms »
Mahdi Haghifam · Jeffrey Negrea · Ashish Khisti · Daniel Roy · Gintare Karolina Dziugaite -
2020 Poster: In search of robust measures of generalization »
Gintare Karolina Dziugaite · Alexandre Drouin · Brady Neal · Nitarshan Rajkumar · Ethan Caballero · Linbo Wang · Ioannis Mitliagkas · Daniel Roy -
2019 : Lunch break & Poster session »
Breandan Considine · Michael Innes · Du Phan · Dougal Maclaurin · Robin Manhaeve · Alexey Radul · Shashi Gowda · Ekansh Sharma · Eli Sennesh · Maxim Kochurov · Gordon Plotkin · Thomas Wiecki · Navjot Kukreja · Chung-chieh Shan · Matthew Johnson · Dan Belov · Neeraj Pradhan · Wannes Meert · Angelika Kimmig · Luc De Raedt · Brian Patton · Matthew Hoffman · Rif A. Saurous · Daniel Roy · Eli Bingham · Martin Jankowiak · Colin Carroll · Junpeng Lao · Liam Paull · Martin Abadi · Angel Rojas Jimenez · JP Chen -
2019 : Lunch Break and Posters »
Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Keun Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu -
2019 Workshop: Machine Learning with Guarantees »
Ben London · Gintare Karolina Dziugaite · Daniel Roy · Thorsten Joachims · Aleksander Madry · John Shawe-Taylor -
2019 Poster: Fast Convergence of Natural Gradient Descent for Over-Parameterized Neural Networks »
Guodong Zhang · James Martens · Roger Grosse -
2019 Poster: Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates »
Jeffrey Negrea · Mahdi Haghifam · Gintare Karolina Dziugaite · Ashish Khisti · Daniel Roy -
2019 Poster: Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model »
Guodong Zhang · Lala Li · Zachary Nado · James Martens · Sushant Sachdeva · George Dahl · Chris Shallue · Roger Grosse -
2019 Poster: Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks »
Qiyang Li · Saminul Haque · Cem Anil · James Lucas · Roger Grosse · Joern-Henrik Jacobsen -
2019 Poster: Fast-rate PAC-Bayes Generalization Bounds via Shifted Rademacher Processes »
Jun Yang · Shengyang Sun · Daniel Roy -
2019 Poster: Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse »
James Lucas · George Tucker · Roger Grosse · Mohammad Norouzi -
2018 Poster: Isolating Sources of Disentanglement in Variational Autoencoders »
Tian Qi Chen · Xuechen (Chen) Li · Roger Grosse · David Duvenaud -
2018 Oral: Isolating Sources of Disentanglement in Variational Autoencoders »
Tian Qi Chen · Xuechen (Chen) Li · Roger Grosse · David Duvenaud -
2018 Poster: Data-dependent PAC-Bayes priors via differential privacy »
Gintare Karolina Dziugaite · Daniel Roy -
2018 Poster: Reversible Recurrent Neural Networks »
Matthew MacKay · Paul Vicol · Jimmy Ba · Roger Grosse -
2017 : Daniel Roy - Deep Neural Networks: From Flat Minima to Numerically Nonvacuous Generalization Bounds via PAC-Bayes »
Daniel Roy -
2017 Poster: Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation »
Yuhuai Wu · Elman Mansimov · Roger Grosse · Shun Liao · Jimmy Ba -
2017 Spotlight: Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation »
Yuhuai Wu · Elman Mansimov · Roger Grosse · Shun Liao · Jimmy Ba -
2017 Poster: The Reversible Residual Network: Backpropagation Without Storing Activations »
Aidan Gomez · Mengye Ren · Raquel Urtasun · Roger Grosse -
2016 Symposium: Deep Learning Symposium »
Yoshua Bengio · Yann LeCun · Navdeep Jaitly · Roger Grosse -
2015 Poster: Learning Wake-Sleep Recurrent Attention Models »
Jimmy Ba · Russ Salakhutdinov · Roger Grosse · Brendan J Frey -
2015 Spotlight: Learning Wake-Sleep Recurrent Attention Models »
Jimmy Ba · Russ Salakhutdinov · Roger Grosse · Brendan J Frey -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Poster: Gibbs-type Indian Buffet Processes »
Creighton Heaukulani · Daniel Roy -
2014 Poster: Mondrian Forests: Efficient Online Random Forests »
Balaji Lakshminarayanan · Daniel Roy · Yee Whye Teh -
2013 Poster: Annealing between distributions by averaging moments »
Roger Grosse · Chris Maddison · Russ Salakhutdinov -
2013 Oral: Annealing between distributions by averaging moments »
Roger Grosse · Chris Maddison · Russ Salakhutdinov -
2013 Session: Session Chair »
Daniel Roy -
2013 Session: Tutorial Session B »
Daniel Roy -
2012 Workshop: Probabilistic Programming: Foundations and Applications (2 day) »
Vikash Mansinghka · Daniel Roy · Noah Goodman -
2012 Workshop: Probabilistic Programming: Foundations and Applications (2 day) »
Vikash Mansinghka · Daniel Roy · Noah Goodman -
2012 Poster: Random function priors for exchangeable graphs and arrays »
James R Lloyd · Daniel Roy · Peter Orbanz · Zoubin Ghahramani -
2011 Poster: Complexity of Inference in Latent Dirichlet Allocation »
David Sontag · Daniel Roy -
2011 Spotlight: Complexity of Inference in Latent Dirichlet Allocation »
David Sontag · Daniel Roy -
2008 Workshop: Probabilistic Programming: Universal Languages, Systems and Applications »
Daniel Roy · John Winn · David A McAllester · Vikash Mansinghka · Josh Tenenbaum -
2008 Oral: The Mondrian Process »
Daniel Roy · Yee Whye Teh -
2008 Poster: The Mondrian Process »
Daniel Roy · Yee Whye Teh -
2007 Poster: Bayesian Agglomerative Clustering with Coalescents »
Yee Whye Teh · Hal Daumé III · Daniel Roy -
2007 Oral: Bayesian Agglomerative Clustering with Coalescents »
Yee Whye Teh · Hal Daumé III · Daniel Roy -
2006 Poster: Learning annotated hierarchies from relational data »
Daniel Roy · Charles Kemp · Vikash Mansinghka · Josh Tenenbaum -
2006 Talk: Learning annotated hierarchies from relational data »
Daniel Roy · Charles Kemp · Vikash Mansinghka · Josh Tenenbaum