Timezone: »
Poster
Refined Lower Bounds for Adversarial Bandits
Sébastien Gerchinovitz · Tor Lattimore
We provide new lower bounds on the regret that must be suffered by adversarial bandit algorithms. The new results show that recent upper bounds that either (a) hold with high-probability or (b) depend on the total loss of the best arm or (c) depend on the quadratic variation of the losses, are close to tight. Besides this we prove two impossibility results. First, the existence of a single arm that is optimal in every round cannot improve the regret in the worst case. Second, the regret cannot scale with the effective range of the losses. In contrast, both results are possible in the full-information setting.
Author Information
Sébastien Gerchinovitz (IRT Saint Exupéry)
Tor Lattimore (DeepMind)
More from the Same Authors
-
2022 Poster: A general approximation lower bound in $L^p$ norm, with applications to feed-forward neural networks »
El Mehdi Achour · Armand Foucault · Sébastien Gerchinovitz · François Malgouyres -
2022 Poster: Regret Bounds for Information-Directed Reinforcement Learning »
Botao Hao · Tor Lattimore -
2021 Poster: Instance-Dependent Bounds for Zeroth-order Lipschitz Optimization with Error Certificates »
Francois Bachoc · Tom Cesari · Sébastien Gerchinovitz -
2021 Poster: Numerical influence of ReLU’(0) on backpropagation »
David Bertoin · Jérôme Bolte · Sébastien Gerchinovitz · Edouard Pauwels -
2018 Poster: TopRank: A practical algorithm for online stochastic ranking »
Tor Lattimore · Branislav Kveton · Shuai Li · Csaba Szepesvari -
2018 Poster: Single-Agent Policy Tree Search With Guarantees »
Laurent Orseau · Levi Lelis · Tor Lattimore · Theophane Weber -
2017 Poster: A Scale Free Algorithm for Stochastic Bandits with Bounded Kurtosis »
Tor Lattimore -
2017 Poster: Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning »
Christoph Dann · Tor Lattimore · Emma Brunskill -
2017 Spotlight: Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning »
Christoph Dann · Tor Lattimore · Emma Brunskill -
2016 Poster: Causal Bandits: Learning Good Interventions via Causal Inference »
Finnian Lattimore · Tor Lattimore · Mark Reid -
2016 Poster: Following the Leader and Fast Rates in Linear Prediction: Curved Constraint Sets and Other Regularities »
Ruitong Huang · Tor Lattimore · András György · Csaba Szepesvari -
2016 Poster: On Explore-Then-Commit strategies »
Aurélien Garivier · Tor Lattimore · Emilie Kaufmann -
2015 Poster: The Pareto Regret Frontier for Bandits »
Tor Lattimore -
2015 Poster: Linear Multi-Resource Allocation with Semi-Bandit Feedback »
Tor Lattimore · Yacov Crammer · Csaba Szepesvari -
2014 Poster: Bounded Regret for Finite-Armed Structured Bandits »
Tor Lattimore · Remi Munos