Timezone: »
Variational autoencoders are powerful models for unsupervised learning. However deep models with several layers of dependent stochastic variables are difficult to train which limits the improvements obtained using these highly expressive models. We propose a new inference model, the Ladder Variational Autoencoder, that recursively corrects the generative distribution by a data dependent approximate likelihood in a process resembling the recently proposed Ladder Network. We show that this model provides state of the art predictive log-likelihood and tighter log-likelihood lower bound compared to the purely bottom-up inference in layered Variational Autoencoders and other generative models. We provide a detailed analysis of the learned hierarchical latent representation and show that our new inference model is qualitatively different and utilizes a deeper more distributed hierarchy of latent variables. Finally, we observe that batch-normalization and deterministic warm-up (gradually turning on the KL-term) are crucial for training variational models with many stochastic layers.
Author Information
Casper Kaae Sønderby (University of Copenhagen)
Tapani Raiko (Apple Inc.)
Lars Maaløe (Technical University of Denmark)
Søren Kaae Sønderby (KU)
Ole Winther (Technical University of Denmark)
More from the Same Authors
-
2017 : Poster Session »
Shunsuke Horii · Heejin Jeong · Tobias Schwedes · Qing He · Ben Calderhead · Ertunc Erdil · Jaan Altosaar · Patrick Muchmore · Rajiv Khanna · Ian Gemp · Pengfei Zhang · Yuan Zhou · Chris Cremer · Maria DeYoreo · Alexander Terenin · Brendan McVeigh · Rachit Singh · Yaodong Yang · Erik Bodin · Trefor Evans · Henry Chai · Shandian Zhe · Jeffrey Ling · Vincent ADAM · Lars Maaløe · Andrew Miller · Ari Pakman · Josip Djolonga · Hong Ge -
2016 Poster: Sequential Neural Models with Stochastic Layers »
Marco Fraccaro · Søren Kaae Sønderby · Ulrich Paquet · Ole Winther -
2016 Oral: Sequential Neural Models with Stochastic Layers »
Marco Fraccaro · Søren Kaae Sønderby · Ulrich Paquet · Ole Winther -
2015 Poster: Semi-supervised Learning with Ladder Networks »
Antti Rasmus · Mathias Berglund · Mikko Honkala · Harri Valpola · Tapani Raiko -
2015 Poster: Bidirectional Recurrent Neural Networks as Generative Models »
Mathias Berglund · Tapani Raiko · Mikko Honkala · Leo Kärkkäinen · Akos Vetek · Juha T Karhunen -
2014 Poster: Bayesian Inference for Structured Spike and Slab Priors »
Michael Riis Andersen · Ole Winther · Lars K Hansen -
2014 Poster: Iterative Neural Autoregressive Distribution Estimator NADE-k »
Tapani Raiko · Yao Li · Kyunghyun Cho · Yoshua Bengio -
2009 Poster: Bayesian Sparse Factor Models and DAGs Inference and Comparison »
Ricardo Henao · Ole Winther -
2008 Poster: Improving on Expectation Propagation »
Manfred Opper · Ulrich Paquet · Ole Winther -
2008 Spotlight: Improving on Expectation Propagation »
Manfred Opper · Ulrich Paquet · Ole Winther