Timezone: »
Poster
Dimension-Free Iteration Complexity of Finite Sum Optimization Problems
Yossi Arjevani · Ohad Shamir
Many canonical machine learning problems boil down to a convex optimization problem with a finite sum structure. However, whereas much progress has been made in developing faster algorithms for this setting, the inherent limitations of these problems are not satisfactorily addressed by existing lower bounds. Indeed, current bounds focus on first-order optimization algorithms, and only apply in the often unrealistic regime where the number of iterations is less than $\cO(d/n)$ (where $d$ is the dimension and $n$ is the number of samples). In this work, we extend the framework of Arjevani et al. \cite{arjevani2015lower,arjevani2016iteration} to provide new lower bounds, which are dimension-free, and go beyond the assumptions of current bounds, thereby covering standard finite sum optimization methods, e.g., SAG, SAGA, SVRG, SDCA without duality, as well as stochastic coordinate-descent methods, such as SDCA and accelerated proximal SDCA.
Author Information
Yossi Arjevani (Weizmann Institute of Science)
Ohad Shamir (Weizmann Institute of Science)
More from the Same Authors
-
2021 Spotlight: Random Shuffling Beats SGD Only After Many Epochs on Ill-Conditioned Problems »
Itay Safran · Ohad Shamir -
2022 : On the Complexity of Finding Small Subgradients in Nonsmooth Optimization »
Guy Kornowski · Ohad Shamir -
2022 : On the Complexity of Finding Small Subgradients in Nonsmooth Optimization »
Guy Kornowski · Ohad Shamir -
2022 Poster: On Margin Maximization in Linear and ReLU Networks »
Gal Vardi · Ohad Shamir · Nati Srebro -
2022 Poster: The Sample Complexity of One-Hidden-Layer Neural Networks »
Gal Vardi · Ohad Shamir · Nati Srebro -
2022 Poster: Reconstructing Training Data From Trained Neural Networks »
Niv Haim · Gal Vardi · Gilad Yehudai · Ohad Shamir · Michal Irani -
2022 Poster: Gradient Methods Provably Converge to Non-Robust Networks »
Gal Vardi · Gilad Yehudai · Ohad Shamir -
2021 Poster: Learning a Single Neuron with Bias Using Gradient Descent »
Gal Vardi · Gilad Yehudai · Ohad Shamir -
2021 Poster: Oracle Complexity in Nonsmooth Nonconvex Optimization »
Guy Kornowski · Ohad Shamir -
2021 Poster: A Stochastic Newton Algorithm for Distributed Convex Optimization »
Brian Bullins · Kshitij Patel · Ohad Shamir · Nathan Srebro · Blake Woodworth -
2021 Oral: Oracle Complexity in Nonsmooth Nonconvex Optimization »
Guy Kornowski · Ohad Shamir -
2021 Poster: Random Shuffling Beats SGD Only After Many Epochs on Ill-Conditioned Problems »
Itay Safran · Ohad Shamir -
2020 : Poster Session 1 (gather.town) »
Laurent Condat · Tiffany Vlaar · Ohad Shamir · Mohammadi Zaki · Zhize Li · Guan-Horng Liu · Samuel Horváth · Mher Safaryan · Yoni Choukroun · Kumar Shridhar · Nabil Kahale · Jikai Jin · Pratik Kumar Jawanpuria · Gaurav Kumar Yadav · Kazuki Koyama · Junyoung Kim · Xiao Li · Saugata Purkayastha · Adil Salim · Dighanchal Banerjee · Peter Richtarik · Lakshman Mahto · Tian Ye · Bamdev Mishra · Huikang Liu · Jiajie Zhu -
2020 : Contributed talks in Session 1 (Zoom) »
Sebastian Stich · Laurent Condat · Zhize Li · Ohad Shamir · Tiffany Vlaar · Mohammadi Zaki -
2020 : Contributed Video: Can We Find Near-Approximately-Stationary Points of Nonsmooth Nonconvex Functions?, Ohad Shamir »
Ohad Shamir -
2020 Poster: Neural Networks with Small Weights and Depth-Separation Barriers »
Gal Vardi · Ohad Shamir -
2019 Poster: On the Power and Limitations of Random Features for Understanding Neural Networks »
Gilad Yehudai · Ohad Shamir -
2018 Poster: Are ResNets Provably Better than Linear Predictors? »
Ohad Shamir -
2018 Poster: Global Non-convex Optimization with Discretized Diffusions »
Murat Erdogdu · Lester Mackey · Ohad Shamir -
2017 Poster: Limitations on Variance-Reduction and Acceleration Schemes for Finite Sums Optimization »
Yossi Arjevani -
2017 Spotlight: Limitations on Variance-Reduction and Acceleration Schemes for Finite Sums Optimization »
Yossi Arjevani -
2016 Poster: Without-Replacement Sampling for Stochastic Gradient Methods »
Ohad Shamir -
2016 Oral: Without-Replacement Sampling for Stochastic Gradient Methods »
Ohad Shamir -
2015 Poster: Communication Complexity of Distributed Convex Learning and Optimization »
Yossi Arjevani · Ohad Shamir -
2014 Poster: Fundamental Limits of Online and Distributed Algorithms for Statistical Learning and Estimation »
Ohad Shamir -
2014 Poster: On the Computational Efficiency of Training Neural Networks »
Roi Livni · Shai Shalev-Shwartz · Ohad Shamir -
2013 Poster: Online Learning with Switching Costs and Other Adaptive Adversaries »
Nicolò Cesa-Bianchi · Ofer Dekel · Ohad Shamir