Timezone: »
Many statistical models can be simulated forwards but have intractable likelihoods. Approximate Bayesian Computation (ABC) methods are used to infer properties of these models from data. Traditionally these methods approximate the posterior over parameters by conditioning on data being inside an ε-ball around the observed data, which is only correct in the limit ε→0. Monte Carlo methods can then draw samples from the approximate posterior to approximate predictions or error bars on parameters. These algorithms critically slow down as ε→0, and in practice draw samples from a broader distribution than the posterior. We propose a new approach to likelihood-free inference based on Bayesian conditional density estimation. Preliminary inferences based on limited simulation data are used to guide later simulations. In some cases, learning an accurate parametric representation of the entire true posterior distribution requires fewer model simulations than Monte Carlo ABC methods need to produce a single sample from an approximate posterior.
Author Information
George Papamakarios (University of Edinburgh)
Iain Murray (University of Edinburgh)
Iain Murray is a SICSA Lecturer in Machine Learning at the University of Edinburgh. Iain was introduced to machine learning by David MacKay and Zoubin Ghahramani, both previous NIPS tutorial speakers. He obtained his PhD in 2007 from the Gatsby Computational Neuroscience Unit at UCL. His thesis on Monte Carlo methods received an honourable mention for the ISBA Savage Award. He was a commonwealth fellow in Machine Learning at the University of Toronto, before moving to Edinburgh in 2010. Iain's research interests include building flexible probabilistic models of data, and probabilistic inference from indirect and uncertain observations. Iain is passionate about teaching. He has lectured at several Summer schools, is listed in the top 15 authors on videolectures.net, and was awarded the EUSA Van Heyningen Award for Teaching in Science and Engineering in 2015.
More from the Same Authors
-
2021 Spotlight: Maximum Likelihood Training of Score-Based Diffusion Models »
Yang Song · Conor Durkan · Iain Murray · Stefano Ermon -
2021 Poster: Maximum Likelihood Training of Score-Based Diffusion Models »
Yang Song · Conor Durkan · Iain Murray · Stefano Ermon -
2019 Poster: Neural Spline Flows »
Conor Durkan · Artur Bekasov · Iain Murray · George Papamakarios -
2017 : Panel session »
Iain Murray · Max Welling · Juan Carrasquilla · Anatole von Lilienfeld · Gilles Louppe · Kyle Cranmer -
2017 : Invited talk 3: Learning priors, likelihoods, or posteriors »
Iain Murray -
2017 : Invited talk: Iain Murray (TBA) »
Iain Murray -
2017 Oral: Masked Autoregressive Flow for Density Estimation »
George Papamakarios · Iain Murray · Theo Pavlakou -
2017 Poster: Masked Autoregressive Flow for Density Estimation »
George Papamakarios · Iain Murray · Theo Pavlakou -
2015 : *George Papamakarios* Distilling Intractable Generative Models »
George Papamakarios -
2015 Tutorial: Monte Carlo Inference Methods »
Iain Murray -
2013 Poster: RNADE: The real-valued neural autoregressive density-estimator »
Benigno Uria · Iain Murray · Hugo Larochelle -
2011 Poster: How biased are maximum entropy models? »
Jakob H Macke · Iain Murray · Peter E Latham -
2010 Workshop: Monte Carlo Methods for Bayesian Inference in Modern Day Applications »
Ryan Adams · Mark A Girolami · Iain Murray -
2010 Oral: Slice sampling covariance hyperparameters of latent Gaussian models »
Iain Murray · Ryan Adams -
2010 Poster: Slice sampling covariance hyperparameters of latent Gaussian models »
Iain Murray · Ryan Adams -
2010 Session: Spotlights Session 5 »
Iain Murray -
2010 Session: Oral Session 5 »
Iain Murray -
2008 Poster: Comparing model predictions of response bias and variance in cue combination »
Rama Natarajan · Iain Murray · Ladan Shams · Richard Zemel -
2008 Poster: The Gaussian Process Density Sampler »
Ryan Adams · Iain Murray · David MacKay -
2008 Spotlight: The Gaussian Process Density Sampler »
Ryan Adams · Iain Murray · David MacKay -
2008 Poster: Evaluating probabilities under high-dimensional latent variable models »
Iain Murray · Russ Salakhutdinov -
2008 Spotlight: Evaluating probabilities under high-dimensional latent variable models »
Iain Murray · Russ Salakhutdinov