Timezone: »
Latent Dirichlet Allocation (LDA) is a very popular model for topic modeling as well as many other problems with latent groups. It is both simple and effective. When the number of topics (or latent groups) is unknown, the Hierarchical Dirichlet Process (HDP) provides an elegant non-parametric extension; however, it is a complex model and it is difficult to incorporate prior knowledge since the distribution over topics is implicit. We propose two new models that extend LDA in a simple and intuitive fashion by directly expressing a distribution over the number of topics. We also propose a new online Bayesian moment matching technique to learn the parameters and the number of topics of those models based on streaming data. The approach achieves higher log-likelihood than batch and online HDP with fixed hyperparameters on several corpora.
Author Information
Wei-Shou Hsu (University of Waterloo)
Pascal Poupart (University of Waterloo & Vector Institute)
More from the Same Authors
-
2021 : Best Papers and Closing Remarks »
Ali Ghodsi · Pascal Poupart -
2021 : Panel Discussion »
Pascal Poupart · Ali Ghodsi · Luke Zettlemoyer · Sameer Singh · Kevin Duh · Yejin Choi · Lu Hou -
2021 Workshop: Efficient Natural Language and Speech Processing (Models, Training, and Inference) »
Mehdi Rezaghoizadeh · Lili Mou · Yue Dong · Pascal Poupart · Ali Ghodsi · Qun Liu -
2021 : Opening Speech »
Pascal Poupart -
2021 Poster: Quantifying and Improving Transferability in Domain Generalization »
Guojun Zhang · Han Zhao · Yaoliang Yu · Pascal Poupart -
2021 Poster: Learning Tree Interpretation from Object Representation for Deep Reinforcement Learning »
Guiliang Liu · Xiangyu Sun · Oliver Schulte · Pascal Poupart -
2020 Poster: Learning Agent Representations for Ice Hockey »
Guiliang Liu · Oliver Schulte · Pascal Poupart · Mike Rudd · Mehrsan Javan -
2020 Poster: Learning Dynamic Belief Graphs to Generalize on Text-Based Games »
Ashutosh Adhikari · Xingdi Yuan · Marc-Alexandre Côté · Mikuláš Zelinka · Marc-Antoine Rondeau · Romain Laroche · Pascal Poupart · Jian Tang · Adam Trischler · Will Hamilton -
2018 Workshop: Reinforcement Learning under Partial Observability »
Joni Pajarinen · Chris Amato · Pascal Poupart · David Hsu -
2018 Poster: Deep Homogeneous Mixture Models: Representation, Separation, and Approximation »
Priyank Jaini · Pascal Poupart · Yaoliang Yu -
2018 Poster: Online Structure Learning for Feed-Forward and Recurrent Sum-Product Networks »
Agastya Kalra · Abdullah Rashwan · Wei-Shou Hsu · Pascal Poupart · Prashant Doshi · George Trimponias -
2018 Poster: Unsupervised Video Object Segmentation for Deep Reinforcement Learning »
Vikash Goel · Jameson Weng · Pascal Poupart -
2018 Poster: Monte-Carlo Tree Search for Constrained POMDPs »
Jongmin Lee · Geon-Hyeong Kim · Pascal Poupart · Kee-Eung Kim -
2016 Poster: A Unified Approach for Learning the Parameters of Sum-Product Networks »
Han Zhao · Pascal Poupart · Geoffrey Gordon