Timezone: »
Poster
Exact Recovery of Hard Thresholding Pursuit
Xiaotong Yuan · Ping Li · Tong Zhang
The Hard Thresholding Pursuit (HTP) is a class of truncated gradient descent methods for finding sparse solutions of $\ell_0$-constrained loss minimization problems. The HTP-style methods have been shown to have strong approximation guarantee and impressive numerical performance in high dimensional statistical learning applications. However, the current theoretical treatment of these methods has traditionally been restricted to the analysis of parameter estimation consistency. It remains an open problem to analyze the support recovery performance (a.k.a., sparsistency) of this type of methods for recovering the global minimizer of the original NP-hard problem. In this paper, we bridge this gap by showing, for the first time, that exact recovery of the global sparse minimizer is possible for HTP-style methods under restricted strong condition number bounding conditions. We further show that HTP-style methods are able to recover the support of certain relaxed sparse solutions without assuming bounded restricted strong condition number. Numerical results on simulated data confirms our theoretical predictions.
Author Information
Xiaotong Yuan (Nanjing University of Informat)
Ping Li (Baidu Research USA)
Tong Zhang (The Hong Kong University of Science and Technology)
More from the Same Authors
-
2021 Spotlight: A Theory-Driven Self-Labeling Refinement Method for Contrastive Representation Learning »
Pan Zhou · Caiming Xiong · Xiaotong Yuan · Steven Chu Hong Hoi -
2022 Poster: On Convergence of FedProx: Local Dissimilarity Invariant Bounds, Non-smoothness and Beyond »
Xiaotong Yuan · Ping Li -
2022 Poster: Zeroth-Order Hard-Thresholding: Gradient Error vs. Expansivity »
William de Vazelhes · Hualin Zhang · Huimin Wu · Xiaotong Yuan · Bin Gu -
2021 Poster: Towards Understanding Why Lookahead Generalizes Better Than SGD and Beyond »
Pan Zhou · Hanshu Yan · Xiaotong Yuan · Jiashi Feng · Shuicheng Yan -
2021 Poster: A Theory-Driven Self-Labeling Refinement Method for Contrastive Representation Learning »
Pan Zhou · Caiming Xiong · Xiaotong Yuan · Steven Chu Hong Hoi -
2018 Poster: New Insight into Hybrid Stochastic Gradient Descent: Beyond With-Replacement Sampling and Convexity »
Pan Zhou · Xiaotong Yuan · Jiashi Feng -
2018 Poster: Efficient Stochastic Gradient Hard Thresholding »
Pan Zhou · Xiaotong Yuan · Jiashi Feng -
2017 Poster: Partial Hard Thresholding: Towards A Principled Analysis of Support Recovery »
Jie Shen · Ping Li -
2017 Poster: Simple strategies for recovering inner products from coarsely quantized random projections »
Ping Li · Martin Slawski -
2016 Poster: Learning Additive Exponential Family Graphical Models via $\ell_{2,1}$-norm Regularized M-Estimation »
Xiaotong Yuan · Ping Li · Tong Zhang · Qingshan Liu · Guangcan Liu -
2016 Poster: Quantized Random Projections and Non-Linear Estimation of Cosine Similarity »
Ping Li · Michael Mitzenmacher · Martin Slawski -
2015 Poster: Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling »
Zheng Qu · Peter Richtarik · Tong Zhang -
2015 Poster: Local Smoothness in Variance Reduced Optimization »
Daniel Vainsencher · Han Liu · Tong Zhang -
2015 Poster: Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding »
Rie Johnson · Tong Zhang -
2015 Spotlight: Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding »
Rie Johnson · Tong Zhang -
2015 Poster: b-bit Marginal Regression »
Martin Slawski · Ping Li -
2015 Spotlight: b-bit Marginal Regression »
Martin Slawski · Ping Li -
2015 Poster: Regularization-Free Estimation in Trace Regression with Symmetric Positive Semidefinite Matrices »
Martin Slawski · Ping Li · Matthias Hein -
2014 Poster: Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS) »
Anshumali Shrivastava · Ping Li -
2014 Poster: Recovery of Coherent Data via Low-Rank Dictionary Pursuit »
Guangcan Liu · Ping Li -
2014 Poster: Online Optimization for Max-Norm Regularization »
Jie Shen · Huan Xu · Ping Li -
2014 Spotlight: Recovery of Coherent Data via Low-Rank Dictionary Pursuit »
Guangcan Liu · Ping Li -
2014 Oral: Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS) »
Anshumali Shrivastava · Ping Li -
2013 Poster: Beyond Pairwise: Provably Fast Algorithms for Approximate $k$-Way Similarity Search »
Anshumali Shrivastava · Ping Li -
2013 Poster: Sign Cauchy Projections and Chi-Square Kernel »
Ping Li · Gennady Samorodnitsk · John Hopcroft -
2013 Poster: Accelerating Stochastic Gradient Descent using Predictive Variance Reduction »
Rie Johnson · Tong Zhang -
2013 Poster: Accelerated Mini-Batch Stochastic Dual Coordinate Ascent »
Shai Shalev-Shwartz · Tong Zhang -
2012 Workshop: Modern Nonparametric Methods in Machine Learning »
Sivaraman Balakrishnan · Arthur Gretton · Mladen Kolar · John Lafferty · Han Liu · Tong Zhang -
2012 Poster: Selective Labeling via Error Bound Minimization »
Quanquan Gu · Tong Zhang · Chris Ding · Jiawei Han -
2012 Poster: Entropy Estimations Using Correlated Symmetric Stable Random Projections »
Ping Li · Cun-Hui Zhang -
2012 Poster: One Permutation Hashing »
Ping Li · Art B Owen · Cun-Hui Zhang -
2011 Poster: Hashing Algorithms for Large-Scale Learning »
Ping Li · Anshumali Shrivastava · Joshua L Moore · Arnd C König -
2011 Poster: Learning to Search Efficiently in High Dimensions »
Zhen Li · Huazhong Ning · Liangliang Cao · Tong Zhang · Yihong Gong · Thomas S Huang -
2011 Poster: Spectral Methods for Learning Multivariate Latent Tree Structure »
Anima Anandkumar · Kamalika Chaudhuri · Daniel Hsu · Sham M Kakade · Le Song · Tong Zhang -
2011 Poster: Greedy Model Averaging »
Dong Dai · Tong Zhang -
2010 Poster: Deep Coding Network »
Yuanqing Lin · Tong Zhang · Shenghuo Zhu · Kai Yu -
2010 Spotlight: b-Bit Minwise Hashing for Estimating Three-Way Similarities »
Ping Li · Arnd C König · Wenhao Gui -
2010 Poster: Agnostic Active Learning Without Constraints »
Alina Beygelzimer · Daniel Hsu · John Langford · Tong Zhang -
2010 Poster: b-Bit Minwise Hashing for Estimating Three-Way Similarities »
Ping Li · Arnd C König · Wenhao Gui -
2009 Poster: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2009 Poster: Nonlinear Learning using Local Coordinate Coding »
Kai Yu · Tong Zhang · Yihong Gong -
2009 Oral: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2008 Poster: Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models »
Tong Zhang -
2008 Oral: Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models »
Tong Zhang -
2008 Poster: Sparse Online Learning via Truncated Gradient »
John Langford · Lihong Li · Tong Zhang -
2008 Spotlight: Sparse Online Learning via Truncated Gradient »
John Langford · Lihong Li · Tong Zhang -
2008 Poster: One sketch for all: Theory and Application of Conditional Random Sampling »
Ping Li · Kenneth W Church · Trevor Hastie -
2008 Poster: Multi-stage Convex Relaxation for Learning with Sparse Regularization »
Tong Zhang -
2008 Spotlight: One sketch for all: Theory and Application of Conditional Random Sampling »
Ping Li · Kenneth W Church · Trevor Hastie -
2007 Spotlight: McRank: Learning to Rank Using Multiple Classification and Gradient Boosting »
Ping Li · Chris J Burges · Qiang Wu -
2007 Poster: McRank: Learning to Rank Using Multiple Classification and Gradient Boosting »
Ping Li · Chris J Burges · Qiang Wu -
2007 Poster: A General Boosting Method and its Application to Learning Ranking Functions for Web Search »
Zhaohui Zheng · Hongyuan Zha · Tong Zhang · Olivier Chapelle · Keke Chen · Gordon Sun -
2007 Poster: A Unified Near-Optimal Estimator For Dimension Reduction in $l_\alpha$ ($0<\alpha\leq 2$) Using Sta »
Ping Li · Trevor Hastie -
2007 Poster: The Epoch-Greedy Algorithm for Multi-armed Bandits with Side Information »
John Langford · Tong Zhang -
2006 Poster: Learning on Graph with Laplacian Regularization »
Rie Ando · Tong Zhang -
2006 Poster: Conditional Random Sampling: A Sketch-based Sampling Technique for Sparse Data »
Ping Li · Kenneth W Church · Trevor Hastie