Timezone: »
We present a framework for efficient inference in structured image models that explicitly reason about objects. We achieve this by performing probabilistic inference using a recurrent neural network that attends to scene elements and processes them one at a time. Crucially, the model itself learns to choose the appropriate number of inference steps. We use this scheme to learn to perform inference in partially specified 2D models (variable-sized variational auto-encoders) and fully specified 3D models (probabilistic renderers). We show that such models learn to identify multiple objects - counting, locating and classifying the elements of a scene - without any supervision, e.g., decomposing 3D images with various numbers of objects in a single forward pass of a neural network at unprecedented speed. We further show that the networks produce accurate inferences when compared to supervised counterparts, and that their structure leads to improved generalization.
Author Information
S. M. Ali Eslami (Google DeepMind)
Nicolas Heess (Google DeepMind)
Theophane Weber (DeepMind)
Yuval Tassa (Google DeepMind)
David Szepesvari (Google DeepMind)
koray kavukcuoglu (Google DeepMind)
Geoffrey E Hinton (Google)
Geoffrey Hinton received his PhD in Artificial Intelligence from Edinburgh in 1978 and spent five years as a faculty member at Carnegie-Mellon where he pioneered back-propagation, Boltzmann machines and distributed representations of words. In 1987 he became a fellow of the Canadian Institute for Advanced Research and moved to the University of Toronto. In 1998 he founded the Gatsby Computational Neuroscience Unit at University College London, returning to the University of Toronto in 2001. His group at the University of Toronto then used deep learning to change the way speech recognition and object recognition are done. He currently splits his time between the University of Toronto and Google. In 2010 he received the NSERC Herzberg Gold Medal, Canada's top award in Science and Engineering.
More from the Same Authors
-
2021 Spotlight: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 : Is Curiosity All You Need? On the Utility of Emergent Behaviours from Curious Exploration »
Oliver Groth · Markus Wulfmeier · Giulia Vezzani · Vibhavari Dasagi · Tim Hertweck · Roland Hafner · Nicolas Heess · Martin Riedmiller -
2021 : Inferring a Continuous Distribution of Atom Coordinates from Cryo-EM Images using VAEs »
Dan Rosenbaum · Marta Garnelo · Michal Zielinski · Charles Beattie · Ellen Clancy · Andrea Huber · Pushmeet Kohli · Andrew Senior · John Jumper · Carl Doersch · S. M. Ali Eslami · Olaf Ronneberger · Jonas Adler -
2021 : Learning Transferable Motor Skills with Hierarchical Latent Mixture Policies »
Dushyant Rao · Fereshteh Sadeghi · Leonard Hasenclever · Markus Wulfmeier · Martina Zambelli · Giulia Vezzani · Dhruva Tirumala · Yusuf Aytar · Josh Merel · Nicolas Heess · Raia Hadsell -
2021 : OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion »
Vittorio La Barbera · Fabio Pardo · Yuval Tassa · Petar Kormushev · John Hutchinson -
2021 : Offline Meta-Reinforcement Learning for Industrial Insertion »
Tony Zhao · Jianlan Luo · Oleg Sushkov · Rugile Pevceviciute · Nicolas Heess · Jonathan Scholz · Stefan Schaal · Sergey Levine -
2022 : Fifteen-minute Competition Overview Video »
Guillaume Durandau · Yuval Tassa · Vittorio Caggiano · Vikash Kumar · Seungmoon Song · Massimo Sartori · -
2022 Competition: MyoChallenge: Learning contact-rich manipulation using a musculoskeletal hand »
Vittorio Caggiano · · Guillaume Durandau · Seungmoon Song · Yuval Tassa · Massimo Sartori · Vikash Kumar -
2022 Poster: Large-Scale Retrieval for Reinforcement Learning »
Peter Humphreys · Arthur Guez · Olivier Tieleman · Laurent Sifre · Theophane Weber · Timothy Lillicrap -
2022 Invited Talk: The Forward-Forward Algorithm for Training Deep Neural Networks »
Geoffrey Hinton -
2022 Poster: Data augmentation for efficient learning from parametric experts »
Alexandre Galashov · Josh Merel · Nicolas Heess -
2022 Poster: A Unified Sequence Interface for Vision Tasks »
Ting Chen · Saurabh Saxena · Lala Li · Tsung-Yi Lin · David Fleet · Geoffrey Hinton -
2021 : Inferring a Continuous Distribution of Atom Coordinates from Cryo-EM Images using VAEs »
Dan Rosenbaum · Marta Garnelo · Michal Zielinski · Charles Beattie · Ellen Clancy · Andrea Huber · Pushmeet Kohli · Andrew Senior · John Jumper · Carl Doersch · S. M. Ali Eslami · Olaf Ronneberger · Jonas Adler -
2021 Poster: Entropic Desired Dynamics for Intrinsic Control »
Steven Hansen · Guillaume Desjardins · Kate Baumli · David Warde-Farley · Nicolas Heess · Simon Osindero · Volodymyr Mnih -
2021 Poster: Multimodal Few-Shot Learning with Frozen Language Models »
Maria Tsimpoukelli · Jacob L Menick · Serkan Cabi · S. M. Ali Eslami · Oriol Vinyals · Felix Hill -
2021 Poster: Canonical Capsules: Self-Supervised Capsules in Canonical Pose »
Weiwei Sun · Andrea Tagliasacchi · Boyang Deng · Sara Sabour · Soroosh Yazdani · Geoffrey Hinton · Kwang Moo Yi -
2021 Poster: Neural Production Systems »
Anirudh Goyal · Aniket Didolkar · Nan Rosemary Ke · Charles Blundell · Philippe Beaudoin · Nicolas Heess · Michael Mozer · Yoshua Bengio -
2021 Poster: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2020 Poster: Value-driven Hindsight Modelling »
Arthur Guez · Fabio Viola · Theophane Weber · Lars Buesing · Steven Kapturowski · Doina Precup · David Silver · Nicolas Heess -
2020 Poster: Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning »
Jean-Bastien Grill · Florian Strub · Florent Altché · Corentin Tallec · Pierre Richemond · Elena Buchatskaya · Carl Doersch · Bernardo Avila Pires · Daniel (Zhaohan) Guo · Mohammad Gheshlaghi Azar · Bilal Piot · koray kavukcuoglu · Remi Munos · Michal Valko -
2020 Poster: Critic Regularized Regression »
Ziyu Wang · Alexander Novikov · Konrad Zolna · Josh Merel · Jost Tobias Springenberg · Scott Reed · Bobak Shahriari · Noah Siegel · Caglar Gulcehre · Nicolas Heess · Nando de Freitas -
2020 Oral: Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning »
Jean-Bastien Grill · Florian Strub · Florent Altché · Corentin Tallec · Pierre Richemond · Elena Buchatskaya · Carl Doersch · Bernardo Avila Pires · Daniel (Zhaohan) Guo · Mohammad Gheshlaghi Azar · Bilal Piot · koray kavukcuoglu · Remi Munos · Michal Valko -
2020 Poster: RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning »
Caglar Gulcehre · Ziyu Wang · Alexander Novikov · Thomas Paine · Sergio Gómez · Konrad Zolna · Rishabh Agarwal · Josh Merel · Daniel Mankowitz · Cosmin Paduraru · Gabriel Dulac-Arnold · Jerry Li · Mohammad Norouzi · Matthew Hoffman · Nicolas Heess · Nando de Freitas -
2020 Poster: Big Self-Supervised Models are Strong Semi-Supervised Learners »
Ting Chen · Simon Kornblith · Kevin Swersky · Mohammad Norouzi · Geoffrey E Hinton -
2020 Poster: Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces »
Guy Lorberbom · Chris Maddison · Nicolas Heess · Tamir Hazan · Danny Tarlow -
2019 Poster: Lookahead Optimizer: k steps forward, 1 step back »
Michael Zhang · James Lucas · Jimmy Ba · Geoffrey E Hinton -
2019 Poster: Stacked Capsule Autoencoders »
Adam Kosiorek · Sara Sabour · Yee Whye Teh · Geoffrey E Hinton -
2019 Poster: When does label smoothing help? »
Rafael Müller · Simon Kornblith · Geoffrey E Hinton -
2019 Spotlight: When does label smoothing help? »
Rafael Müller · Simon Kornblith · Geoffrey E Hinton -
2019 Poster: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2019 Spotlight: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2018 : Discussion Panel: Ryan Adams, Nicolas Heess, Leslie Kaelbling, Shie Mannor, Emo Todorov (moderator: Roy Fox) »
Ryan Adams · Nicolas Heess · Leslie Kaelbling · Shie Mannor · Emo Todorov · Roy Fox -
2018 : Probabilistic Reasoning for Reinforcement Learning (Nicolas Heess) »
Nicolas Heess -
2018 : Poster Session 1 + Coffee »
Tom Van de Wiele · Rui Zhao · J. Fernando Hernandez-Garcia · Fabio Pardo · Xian Yeow Lee · Xiaolin Andy Li · Marcin Andrychowicz · Jie Tang · Suraj Nair · Juhyeon Lee · Cédric Colas · S. M. Ali Eslami · Yen-Chen Wu · Stephen McAleer · Ryan Julian · Yang Xue · Matthia Sabatelli · Pranav Shyam · Alexandros Kalousis · Giovanni Montana · Emanuele Pesce · Felix Leibfried · Zhanpeng He · Chunxiao Liu · Yanjun Li · Yoshihide Sawada · Alexander Pashevich · Tejas Kulkarni · Keiran Paster · Luca Rigazio · Quan Vuong · Hyunggon Park · Minhae Kwon · Rivindu Weerasekera · Shamane Siriwardhanaa · Rui Wang · Ozsel Kilinc · Keith Ross · Yizhou Wang · Simon Schmitt · Thomas Anthony · Evan Cater · Forest Agostinelli · Tegg Sung · Shirou Maruyama · Alexander Shmakov · Devin Schwab · Mohammad Firouzi · Glen Berseth · Denis Osipychev · Jesse Farebrother · Jianlan Luo · William Agnew · Peter Vrancx · Jonathan Heek · Catalin Ionescu · Haiyan Yin · Megumi Miyashita · Nathan Jay · Noga H. Rotman · Sam Leroux · Shaileshh Bojja Venkatakrishnan · Henri Schmidt · Jack Terwilliger · Ishan Durugkar · Jonathan Sauder · David Kas · Arash Tavakoli · Alain-Sam Cohen · Philip Bontrager · Adam Lerer · Thomas Paine · Ahmed Khalifa · Ruben Rodriguez · Avi Singh · Yiming Zhang -
2018 Poster: Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures »
Sergey Bartunov · Adam Santoro · Blake Richards · Luke Marris · Geoffrey E Hinton · Timothy Lillicrap -
2018 Poster: Learning to Navigate in Cities Without a Map »
Piotr Mirowski · Matt Grimes · Mateusz Malinowski · Karl Moritz Hermann · Keith Anderson · Denis Teplyashin · Karen Simonyan · koray kavukcuoglu · Andrew Zisserman · Raia Hadsell -
2018 Poster: Single-Agent Policy Tree Search With Guarantees »
Laurent Orseau · Levi Lelis · Tor Lattimore · Theophane Weber -
2018 Poster: A Probabilistic U-Net for Segmentation of Ambiguous Images »
Simon Kohl · Bernardino Romera-Paredes · Clemens Meyer · Jeffrey De Fauw · Joseph R. Ledsam · Klaus Maier-Hein · S. M. Ali Eslami · Danilo Jimenez Rezende · Olaf Ronneberger -
2018 Spotlight: A Probabilistic U-Net for Segmentation of Ambiguous Images »
Simon Kohl · Bernardino Romera-Paredes · Clemens Meyer · Jeffrey De Fauw · Joseph R. Ledsam · Klaus Maier-Hein · S. M. Ali Eslami · Danilo Jimenez Rezende · Olaf Ronneberger -
2018 Poster: Relational recurrent neural networks »
Adam Santoro · Ryan Faulkner · David Raposo · Jack Rae · Mike Chrzanowski · Theophane Weber · Daan Wierstra · Oriol Vinyals · Razvan Pascanu · Timothy Lillicrap -
2017 Workshop: Machine Learning for Creativity and Design »
Douglas Eck · David Ha · S. M. Ali Eslami · Sander Dieleman · Rebecca Fiebrink · Luba Elliott -
2017 Poster: Distral: Robust multitask reinforcement learning »
Yee Teh · Victor Bapst · Wojciech Czarnecki · John Quan · James Kirkpatrick · Raia Hadsell · Nicolas Heess · Razvan Pascanu -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: Dynamic Routing Between Capsules »
Sara Sabour · Nicholas Frosst · Geoffrey E Hinton -
2017 Poster: Visual Interaction Networks: Learning a Physics Simulator from Video »
Nicholas Watters · Daniel Zoran · Theophane Weber · Peter Battaglia · Razvan Pascanu · Andrea Tacchetti -
2017 Poster: Neural Discrete Representation Learning »
Aaron van den Oord · Oriol Vinyals · koray kavukcuoglu -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2017 Spotlight: Dynamic Routing Between Capsules »
Sara Sabour · Nicholas Frosst · Geoffrey E Hinton -
2017 Poster: Robust Imitation of Diverse Behaviors »
Ziyu Wang · Josh Merel · Scott Reed · Nando de Freitas · Gregory Wayne · Nicolas Heess -
2017 Poster: Learning Hierarchical Information Flow with Recurrent Neural Modules »
Danijar Hafner · Alexander Irpan · James Davidson · Nicolas Heess -
2016 Poster: Unsupervised Learning of 3D Structure from Images »
Danilo Jimenez Rezende · S. M. Ali Eslami · Shakir Mohamed · Peter Battaglia · Max Jaderberg · Nicolas Heess -
2016 Poster: Conditional Image Generation with PixelCNN Decoders »
Aaron van den Oord · Nal Kalchbrenner · Lasse Espeholt · koray kavukcuoglu · Oriol Vinyals · Alex Graves -
2016 Poster: Using Fast Weights to Attend to the Recent Past »
Jimmy Ba · Geoffrey E Hinton · Volodymyr Mnih · Joel Leibo · Catalin Ionescu -
2016 Oral: Using Fast Weights to Attend to the Recent Past »
Jimmy Ba · Geoffrey E Hinton · Volodymyr Mnih · Joel Leibo · Catalin Ionescu -
2016 Poster: Interaction Networks for Learning about Objects, Relations and Physics »
Peter Battaglia · Razvan Pascanu · Matthew Lai · Danilo Jimenez Rezende · koray kavukcuoglu -
2016 Poster: Strategic Attentive Writer for Learning Macro-Actions »
Alexander (Sasha) Vezhnevets · Volodymyr Mnih · Simon Osindero · Alex Graves · Oriol Vinyals · John Agapiou · koray kavukcuoglu -
2016 Poster: Matching Networks for One Shot Learning »
Oriol Vinyals · Charles Blundell · Timothy Lillicrap · koray kavukcuoglu · Daan Wierstra -
2015 Workshop: Black box learning and inference »
Josh Tenenbaum · Jan-Willem van de Meent · Tejas Kulkarni · S. M. Ali Eslami · Brooks Paige · Frank Wood · Zoubin Ghahramani -
2015 Poster: Natural Neural Networks »
Guillaume Desjardins · Karen Simonyan · Razvan Pascanu · koray kavukcuoglu -
2015 Poster: Gradient Estimation Using Stochastic Computation Graphs »
John Schulman · Nicolas Heess · Theophane Weber · Pieter Abbeel -
2015 Poster: Spatial Transformer Networks »
Max Jaderberg · Karen Simonyan · Andrew Zisserman · koray kavukcuoglu -
2015 Spotlight: Spatial Transformer Networks »
Max Jaderberg · Karen Simonyan · Andrew Zisserman · koray kavukcuoglu -
2015 Poster: Learning Continuous Control Policies by Stochastic Value Gradients »
Nicolas Heess · Gregory Wayne · David Silver · Timothy Lillicrap · Tom Erez · Yuval Tassa -
2015 Poster: Grammar as a Foreign Language »
Oriol Vinyals · Łukasz Kaiser · Terry Koo · Slav Petrov · Ilya Sutskever · Geoffrey Hinton -
2015 Tutorial: Deep Learning »
Geoffrey E Hinton · Yoshua Bengio · Yann LeCun -
2014 Workshop: Deep Learning and Representation Learning »
Andrew Y Ng · Yoshua Bengio · Adam Coates · Roland Memisevic · Sharanyan Chetlur · Geoffrey E Hinton · Shamim Nemati · Bryan Catanzaro · Surya Ganguli · Herbert Jaeger · Phil Blunsom · Leon Bottou · Volodymyr Mnih · Chen-Yu Lee · Rich M Schwartz -
2014 Poster: Recurrent Models of Visual Attention »
Volodymyr Mnih · Nicolas Heess · Alex Graves · koray kavukcuoglu -
2014 Spotlight: Recurrent Models of Visual Attention »
Volodymyr Mnih · Nicolas Heess · Alex Graves · koray kavukcuoglu -
2012 Poster: ImageNet Classification with Deep Convolutional Neural Networks »
Alex Krizhevsky · Ilya Sutskever · Geoffrey E Hinton -
2012 Invited Talk: Dropout: A simple and effective way to improve neural networks »
Geoffrey E Hinton · George Dahl -
2012 Poster: A Better Way to Pre-Train Deep Boltzmann Machines »
Russ Salakhutdinov · Geoffrey E Hinton -
2012 Spotlight: ImageNet Classification with Deep Convolutional Neural Networks »
Alex Krizhevsky · Ilya Sutskever · Geoffrey E Hinton -
2012 Poster: Learning the Dependency Structure of Latent Factors »
Yunlong He · Yanjun Qi · koray kavukcuoglu · Haesun Park -
2010 Workshop: Deep Learning and Unsupervised Feature Learning »
Honglak Lee · Marc'Aurelio Ranzato · Yoshua Bengio · Geoffrey E Hinton · Yann LeCun · Andrew Y Ng -
2010 Talk: A Probabilistic Approach to Data Visualization »
Geoffrey E Hinton -
2010 Oral: Learning to combine foveal glimpses with a third-order Boltzmann machine »
Hugo Larochelle · Geoffrey E Hinton -
2010 Poster: Learning to combine foveal glimpses with a third-order Boltzmann machine »
Hugo Larochelle · Geoffrey E Hinton -
2010 Poster: Generating more realistic images using gated MRF's »
Marc'Aurelio Ranzato · Volodymyr Mnih · Geoffrey E Hinton -
2010 Spotlight: Learning Convolutional Feature Hierarchies for Visual Recognition »
koray kavukcuoglu · Pierre Sermanet · Y-Lan Boureau · Karol Gregor · Michael Mathieu · Yann LeCun -
2010 Poster: Learning Convolutional Feature Hierarchies for Visual Recognition »
koray kavukcuoglu · Pierre Sermanet · Y-Lan Boureau · Karol Gregor · Michael Mathieu · Yann LeCun -
2010 Poster: Phone Recognition with the Mean-Covariance Restricted Boltzmann Machine »
George Dahl · Marc'Aurelio Ranzato · Abdel-rahman Mohamed · Geoffrey E Hinton -
2010 Poster: Gated Softmax Classification »
Roland Memisevic · Christopher Zach · Geoffrey E Hinton · Marc Pollefeys -
2009 Workshop: Deep Learning for Speech Recognition and Related Applications »
Li Deng · Dong Yu · Geoffrey E Hinton -
2009 Poster: Replicated Softmax: an Undirected Topic Model »
Russ Salakhutdinov · Geoffrey E Hinton -
2009 Poster: 3D Object Recognition with Deep Belief Nets »
Vinod Nair · Geoffrey E Hinton -
2009 Spotlight: 3D Object Recognition with Deep Belief Nets »
Vinod Nair · Geoffrey E Hinton -
2009 Invited Talk: Deep Learning with Multiplicative Interactions »
Geoffrey E Hinton -
2009 Poster: Zero-shot Learning with Semantic Output Codes »
Mark M Palatucci · Dean Pomerleau · Geoffrey E Hinton · Tom Mitchell -
2008 Poster: Using matrices to model symbolic relationship »
Ilya Sutskever · Geoffrey E Hinton -
2008 Demonstration: Visualizing NIPS Cooperations using Multiple Maps t-SNE »
Laurens van der Maaten · Geoffrey E Hinton -
2008 Spotlight: Using matrices to model symbolic relationship »
Ilya Sutskever · Geoffrey E Hinton -
2008 Poster: The Recurrent Temporal Restricted Boltzmann Machine »
Ilya Sutskever · Geoffrey E Hinton · Graham Taylor -
2008 Poster: A Scalable Hierarchical Distributed Language Model »
Andriy Mnih · Geoffrey E Hinton -
2008 Poster: Implicit Mixtures of Restricted Boltzmann Machines »
Vinod Nair · Geoffrey E Hinton -
2008 Poster: Competing RBM density models for classification of fMRI images »
Tanya Schmah · Geoffrey E Hinton · Richard Zemel -
2007 Tutorial: Deep Belief Nets »
Geoffrey E Hinton -
2007 Poster: Using Deep Belief Nets to Learn Covariance Kernels for Gaussian Processes »
Russ Salakhutdinov · Geoffrey E Hinton -
2007 Poster: Modeling image patches with a directed hierarchy of Markov random fields »
Simon Osindero · Geoffrey E Hinton -
2006 Poster: Modeling Human Motion Using Binary Latent Variables »
Graham Taylor · Geoffrey E Hinton · Sam T Roweis -
2006 Spotlight: Modeling Human Motion Using Binary Latent Variables »
Graham Taylor · Geoffrey E Hinton · Sam T Roweis