Timezone: »
Neural networks (NN) have achieved state-of-the-art performance in various applications. Unfortunately in applications where training data is insufficient, they are often prone to overfitting. One effective way to alleviate this problem is to exploit the Bayesian approach by using Bayesian neural networks (BNN). Another shortcoming of NN is the lack of flexibility to customize different distributions for the weights and neurons according to the data, as is often done in probabilistic graphical models. To address these problems, we propose a class of probabilistic neural networks, dubbed natural-parameter networks (NPN), as a novel and lightweight Bayesian treatment of NN. NPN allows the usage of arbitrary exponential-family distributions to model the weights and neurons. Different from traditional NN and BNN, NPN takes distributions as input and goes through layers of transformation before producing distributions to match the target output distributions. As a Bayesian treatment, efficient backpropagation (BP) is performed to learn the natural parameters for the distributions over both the weights and neurons. The output distributions of each layer, as byproducts, may be used as second-order representations for the associated tasks such as link prediction. Experiments on real-world datasets show that NPN can achieve state-of-the-art performance.
Author Information
Hao Wang (HKUST)
Xingjian SHI (Hong Kong University of Science and Technology)
Dit-Yan Yeung (Hong Kong University of Science and Technology)
More from the Same Authors
-
2022 Spotlight: Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator »
Zifan Shi · Yinghao Xu · Yujun Shen · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Spotlight: Lightning Talks 5B-1 »
Devansh Arpit · Xiaojun Xu · Zifan Shi · Ivan Skorokhodov · Shayan Shekarforoush · Zhan Tong · Yiqun Wang · Shichong Peng · Linyi Li · Ivan Skorokhodov · Huan Wang · Yibing Song · David Lindell · Yinghao Xu · Seyed Alireza Moazenipourasil · Sergey Tulyakov · Peter Wonka · Yiqun Wang · Ke Li · David Fleet · Yujun Shen · Yingbo Zhou · Bo Li · Jue Wang · Peter Wonka · Marcus Brubaker · Caiming Xiong · Limin Wang · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Spotlight: Lightning Talks 4A-3 »
Zhihan Gao · Yabin Wang · Xingyu Qu · Luziwei Leng · Mingqing Xiao · Bohan Wang · Yu Shen · Zhiwu Huang · Xingjian Shi · Qi Meng · Yupeng Lu · Diyang Li · Qingyan Meng · Kaiwei Che · Yang Li · Hao Wang · Huishuai Zhang · Zongpeng Zhang · Kaixuan Zhang · Xiaopeng Hong · Xiaohan Zhao · Di He · Jianguo Zhang · Yaofeng Tu · Bin Gu · Yi Zhu · Ruoyu Sun · Yuyang (Bernie) Wang · Zhouchen Lin · Qinghu Meng · Wei Chen · Wentao Zhang · Bin CUI · Jie Cheng · Zhi-Ming Ma · Mu Li · Qinghai Guo · Dit-Yan Yeung · Tie-Yan Liu · Jianxing Liao -
2022 Spotlight: Earthformer: Exploring Space-Time Transformers for Earth System Forecasting »
Zhihan Gao · Xingjian Shi · Hao Wang · Yi Zhu · Yuyang (Bernie) Wang · Mu Li · Dit-Yan Yeung -
2022 Poster: Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator »
Zifan Shi · Yinghao Xu · Yujun Shen · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Poster: Earthformer: Exploring Space-Time Transformers for Earth System Forecasting »
Zhihan Gao · Xingjian Shi · Hao Wang · Yi Zhu · Yuyang (Bernie) Wang · Mu Li · Dit-Yan Yeung -
2017 Poster: Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model »
Xingjian Shi · Zhihan Gao · Leonard Lausen · Hao Wang · Dit-Yan Yeung · Wai-kin Wong · Wang-chun WOO -
2017 Spotlight: Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model »
Xingjian Shi · Zhihan Gao · Leonard Lausen · Hao Wang · Dit-Yan Yeung · Wai-kin Wong · Wang-chun WOO -
2016 Poster: Collaborative Recurrent Autoencoder: Recommend while Learning to Fill in the Blanks »
Hao Wang · Xingjian SHI · Dit-Yan Yeung -
2015 Poster: Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting »
Xingjian Shi · Zhourong Chen · Hao Wang · Dit-Yan Yeung · Wai-kin Wong · Wang-chun WOO -
2013 Poster: Learning a Deep Compact Image Representation for Visual Tracking »
Naiyan Wang · Dit-Yan Yeung -
2012 Poster: Co-Regularized Hashing for Multimodal Data »
Yi Zhen · Dit-Yan Yeung -
2010 Poster: Worst-Case Linear Discriminant Analysis »
Yu Zhang · Dit-Yan Yeung -
2010 Poster: Probabilistic Multi-Task Feature Selection »
Yu Zhang · Dit-Yan Yeung · Qian Xu -
2009 Poster: Probabilistic Relational PCA »
Wu-Jun Li · Dit-Yan Yeung · Zhihua Zhang -
2009 Spotlight: Probabilistic Relational PCA »
Wu-Jun Li · Dit-Yan Yeung · Zhihua Zhang -
2008 Poster: Posterior Consistency of the Silverman g-prior in Bayesian Model Choice »
Zhihua Zhang · Michael Jordan · Dit-Yan Yeung -
2008 Spotlight: Posterior Consistency of the Silverman g-prior in Bayesian Model Choice »
Zhihua Zhang · Michael Jordan · Dit-Yan Yeung