Timezone: »
We introduce the Multiple Quantile Graphical Model (MQGM), which extends the neighborhood selection approach of Meinshausen and Buhlmann for learning sparse graphical models. The latter is defined by the basic subproblem of modeling the conditional mean of one variable as a sparse function of all others. Our approach models a set of conditional quantiles of one variable as a sparse function of all others, and hence offers a much richer, more expressive class of conditional distribution estimates. We establish that, under suitable regularity conditions, the MQGM identifies the exact conditional independencies with probability tending to one as the problem size grows, even outside of the usual homoskedastic Gaussian data model. We develop an efficient algorithm for fitting the MQGM using the alternating direction method of multipliers. We also describe a strategy for sampling from the joint distribution that underlies the MQGM estimate. Lastly, we present detailed experiments that demonstrate the flexibility and effectiveness of the MQGM in modeling hetereoskedastic non-Gaussian data.
Author Information
Alnur Ali (Carnegie Mellon University)
J. Zico Kolter (Carnegie Mellon University / Bosch Center for AI)
Zico Kolter is an Assistant Professor in the School of Computer Science at Carnegie Mellon University, and also serves as Chief Scientist of AI Research for the Bosch Center for Artificial Intelligence. His work focuses on the intersection of machine learning and optimization, with a large focus on developing more robust, explainable, and rigorous methods in deep learning. In addition, he has worked on a number of application areas, highlighted by work on sustainability and smart energy systems. He is the recipient of the DARPA Young Faculty Award, and best paper awards at KDD, IJCAI, and PESGM.
Ryan Tibshirani (Carnegie Mellon University)
More from the Same Authors
-
2020 Workshop: Machine Learning for Engineering Modeling, Simulation and Design »
Alex Beatson · Priya Donti · Amira Abdel-Rahman · Stephan Hoyer · Rose Yu · J. Zico Kolter · Ryan Adams -
2020 Poster: Community detection using fast low-cardinality semidefinite programming
»
Po-Wei Wang · J. Zico Kolter -
2020 Poster: Deep Archimedean Copulas »
Chun Kai Ling · Fei Fang · J. Zico Kolter -
2020 Tutorial: (Track3) Deep Implicit Layers: Neural ODEs, Equilibrium Models, and Differentiable Optimization Q&A »
David Duvenaud · J. Zico Kolter · Matthew Johnson -
2020 Poster: Efficient semidefinite-programming-based inference for binary and multi-class MRFs »
Chirag Pabbaraju · Po-Wei Wang · J. Zico Kolter -
2020 Spotlight: Efficient semidefinite-programming-based inference for binary and multi-class MRFs »
Chirag Pabbaraju · Po-Wei Wang · J. Zico Kolter -
2020 Poster: Multiscale Deep Equilibrium Models »
Shaojie Bai · Vladlen Koltun · J. Zico Kolter -
2020 Poster: Denoised Smoothing: A Provable Defense for Pretrained Classifiers »
Hadi Salman · Mingjie Sun · Greg Yang · Ashish Kapoor · J. Zico Kolter -
2020 Poster: Monotone operator equilibrium networks »
Ezra Winston · J. Zico Kolter -
2020 Spotlight: Monotone operator equilibrium networks »
Ezra Winston · J. Zico Kolter -
2020 Oral: Multiscale Deep Equilibrium Models »
Shaojie Bai · Vladlen Koltun · J. Zico Kolter -
2020 Tutorial: (Track3) Deep Implicit Layers: Neural ODEs, Equilibrium Models, and Differentiable Optimization »
David Duvenaud · J. Zico Kolter · Matthew Johnson -
2019 Poster: Learning Stable Deep Dynamics Models »
J. Zico Kolter · Gaurav Manek -
2019 Poster: Adversarial Music: Real world Audio Adversary against Wake-word Detection System »
Juncheng Li · Shuhui Qu · Xinjian Li · Joseph Szurley · J. Zico Kolter · Florian Metze -
2019 Spotlight: Adversarial Music: Real world Audio Adversary against Wake-word Detection System »
Juncheng Li · Shuhui Qu · Xinjian Li · Joseph Szurley · J. Zico Kolter · Florian Metze -
2019 Poster: Differentiable Convex Optimization Layers »
Akshay Agrawal · Brandon Amos · Shane Barratt · Stephen Boyd · Steven Diamond · J. Zico Kolter -
2019 Poster: Kalman Filter, Sensor Fusion, and Constrained Regression: Equivalences and Insights »
Maria Jahja · David Farrow · Roni Rosenfeld · Ryan Tibshirani -
2019 Poster: Uniform convergence may be unable to explain generalization in deep learning »
Vaishnavh Nagarajan · J. Zico Kolter -
2019 Poster: Conformal Prediction Under Covariate Shift »
Ryan Tibshirani · Rina Barber · Emmanuel Candes · Aaditya Ramdas -
2019 Poster: Deep Equilibrium Models »
Shaojie Bai · J. Zico Kolter · Vladlen Koltun -
2019 Spotlight: Deep Equilibrium Models »
Shaojie Bai · J. Zico Kolter · Vladlen Koltun -
2019 Oral: Uniform convergence may be unable to explain generalization in deep learning »
Vaishnavh Nagarajan · J. Zico Kolter -
2018 Poster: Differentiable MPC for End-to-end Planning and Control »
Brandon Amos · Ivan Jimenez · Jacob I Sacks · Byron Boots · J. Zico Kolter -
2018 Poster: End-to-End Differentiable Physics for Learning and Control »
Filipe de Avila Belbute-Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter -
2018 Spotlight: End-to-End Differentiable Physics for Learning and Control »
Filipe de Avila Belbute-Peres · Kevin Smith · Kelsey Allen · Josh Tenenbaum · J. Zico Kolter -
2018 Poster: Scaling provable adversarial defenses »
Eric Wong · Frank Schmidt · Jan Hendrik Metzen · J. Zico Kolter -
2018 Tutorial: Adversarial Robustness: Theory and Practice »
J. Zico Kolter · Aleksander Madry -
2017 Poster: Gradient descent GAN optimization is locally stable »
Vaishnavh Nagarajan · J. Zico Kolter -
2017 Poster: A Sharp Error Analysis for the Fused Lasso, with Application to Approximate Changepoint Screening »
Kevin Lin · James Sharpnack · Alessandro Rinaldo · Ryan Tibshirani -
2017 Oral: Gradient descent GAN optimization is locally stable »
Vaishnavh Nagarajan · J. Zico Kolter -
2017 Poster: Higher-Order Total Variation Classes on Grids: Minimax Theory and Trend Filtering Methods »
Veeranjaneyulu Sadhanala · Yu-Xiang Wang · James Sharpnack · Ryan Tibshirani -
2017 Poster: Dykstra's Algorithm, ADMM, and Coordinate Descent: Connections, Insights, and Extensions »
Ryan Tibshirani -
2017 Poster: Task-based End-to-end Model Learning in Stochastic Optimization »
Priya Donti · J. Zico Kolter · Brandon Amos -
2016 Poster: Total Variation Classes Beyond 1d: Minimax Rates, and the Limitations of Linear Smoothers »
Veeranjaneyulu Sadhanala · Yu-Xiang Wang · Ryan Tibshirani -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan L Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2011 Workshop: Machine Learning for Sustainability »
Thomas Dietterich · J. Zico Kolter · Matthew A Brown -
2011 Poster: The Fixed Points of Off-Policy TD »
J. Zico Kolter -
2011 Spotlight: The Fixed Points of Off-Policy TD »
J. Zico Kolter -
2010 Poster: Energy Disaggregation via Discriminative Sparse Coding »
J. Zico Kolter · Siddarth Batra · Andrew Y Ng -
2009 Mini Symposium: Machine Learning for Sustainability »
J. Zico Kolter · Thomas Dietterich · Andrew Y Ng -
2007 Spotlight: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng -
2007 Poster: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion »
J. Zico Kolter · Pieter Abbeel · Andrew Y Ng