Timezone: »
Due to the computational difficulty of performing MMSE (minimum mean squared error) inference, maximum a posteriori (MAP) is often used as a surrogate. However, the accuracy of MAP is suboptimal for high dimensional inference, where the number of model parameters is of the same order as the number of samples. In this work we demonstrate how MMSE performance is asymptotically achievable via optimization with an appropriately selected convex penalty and regularization function which are a smoothed version of the widely applied MAP algorithm. Our findings provide a new derivation and interpretation for recent optimal M-estimators discovered by El Karoui, et. al. PNAS 2013 as well as extending to non-additive noise models. We demonstrate the performance of these optimal M-estimators with numerical simulations. Overall, at the heart of our work is the revelation of a remarkable equivalence between two seemingly very different computational problems: namely that of high dimensional Bayesian integration, and high dimensional convex optimization. In essence we show that the former computationally difficult integral may be computed by solving the latter, simpler optimization problem.
Author Information
Madhu Advani (Stanford University)
Surya Ganguli (Stanford)
More from the Same Authors
-
2022 : Unmasking the Lottery Ticket Hypothesis: Efficient Adaptive Pruning for Finding Winning Tickets »
Mansheej Paul · Feng Chen · Brett Larsen · Jonathan Frankle · Surya Ganguli · Gintare Karolina Dziugaite -
2022 Poster: Lottery Tickets on a Data Diet: Finding Initializations with Sparse Trainable Networks »
Mansheej Paul · Brett Larsen · Surya Ganguli · Jonathan Frankle · Gintare Karolina Dziugaite -
2022 Poster: Beyond neural scaling laws: beating power law scaling via data pruning »
Ben Sorscher · Robert Geirhos · Shashank Shekhar · Surya Ganguli · Ari Morcos -
2021 : Session 3 | Invited talk: Surya Ganguli, "From the geometry of high dimensional energy landscapes to optimal annealing in a dissipative many body quantum optimizer" »
Surya Ganguli · Atilim Gunes Baydin -
2021 Poster: Deep Learning on a Data Diet: Finding Important Examples Early in Training »
Mansheej Paul · Surya Ganguli · Gintare Karolina Dziugaite -
2020 Poster: Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel »
Stanislav Fort · Gintare Karolina Dziugaite · Mansheej Paul · Sepideh Kharaghani · Daniel Roy · Surya Ganguli -
2020 Poster: Predictive coding in balanced neural networks with noise, chaos and delays »
Jonathan Kadmon · Jonathan Timcheck · Surya Ganguli -
2020 Poster: Identifying Learning Rules From Neural Network Observables »
Aran Nayebi · Sanjana Srivastava · Surya Ganguli · Daniel Yamins -
2020 Spotlight: Identifying Learning Rules From Neural Network Observables »
Aran Nayebi · Sanjana Srivastava · Surya Ganguli · Daniel Yamins -
2020 Poster: Pruning neural networks without any data by iteratively conserving synaptic flow »
Hidenori Tanaka · Daniel Kunin · Daniel Yamins · Surya Ganguli -
2019 : Panel Session: A new hope for neuroscience »
Yoshua Bengio · Blake Richards · Timothy Lillicrap · Ila Fiete · David Sussillo · Doina Precup · Konrad Kording · Surya Ganguli -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Panel - The Role of Communication at Large: Aparna Lakshmiratan, Jason Yosinski, Been Kim, Surya Ganguli, Finale Doshi-Velez »
Aparna Lakshmiratan · Finale Doshi-Velez · Surya Ganguli · Zachary Lipton · Michela Paganini · Anima Anandkumar · Jason Yosinski -
2019 : Invited Talk: Theories for the emergence of internal representations in neural networks: from perception to navigation »
Surya Ganguli -
2019 : Surya Ganguli, Yasaman Bahri, Florent Krzakala moderated by Lenka Zdeborova »
Florent Krzakala · Yasaman Bahri · Surya Ganguli · Lenka Zdeborová · Adji Bousso Dieng · Joan Bruna -
2019 : Surya Ganguli - An analytic theory of generalization dynamics and transfer learning in deep linear networks »
Surya Ganguli -
2019 Poster: A unified theory for the origin of grid cells through the lens of pattern formation »
Ben Sorscher · Gabriel Mel · Surya Ganguli · Samuel Ocko -
2019 Poster: Universality and individuality in neural dynamics across large populations of recurrent networks »
Niru Maheswaranathan · Alex Williams · Matthew Golub · Surya Ganguli · David Sussillo -
2019 Spotlight: A unified theory for the origin of grid cells through the lens of pattern formation »
Ben Sorscher · Gabriel Mel · Surya Ganguli · Samuel Ocko -
2019 Spotlight: Universality and individuality in neural dynamics across large populations of recurrent networks »
Niru Maheswaranathan · Alex Williams · Matthew Golub · Surya Ganguli · David Sussillo -
2019 Poster: From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction »
Hidenori Tanaka · Aran Nayebi · Niru Maheswaranathan · Lane McIntosh · Stephen Baccus · Surya Ganguli -
2019 Poster: Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics »
Niru Maheswaranathan · Alex Williams · Matthew Golub · Surya Ganguli · David Sussillo -
2018 Poster: The emergence of multiple retinal cell types through efficient coding of natural movies »
Samuel Ocko · Jack Lindsey · Surya Ganguli · Stephane Deny -
2018 Poster: Statistical mechanics of low-rank tensor decomposition »
Jonathan Kadmon · Surya Ganguli -
2018 Poster: Task-Driven Convolutional Recurrent Models of the Visual System »
Aran Nayebi · Daniel Bear · Jonas Kubilius · Kohitij Kar · Surya Ganguli · David Sussillo · James J DiCarlo · Daniel Yamins -
2017 : Poster Session 1 and Lunch »
Sumanth Dathathri · Akshay Rangamani · Prakhar Sharma · Aruni RoyChowdhury · Madhu Advani · William Guss · Chulhee Yun · Corentin Hardy · Michele Alberti · Devendra Sachan · Andreas Veit · Takashi Shinozaki · Peter Chin -
2017 Poster: Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net »
Anirudh Goyal · Nan Rosemary Ke · Surya Ganguli · Yoshua Bengio -
2017 Poster: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice »
Jeffrey Pennington · Samuel Schoenholz · Surya Ganguli -
2016 : Surya Ganguli : Deep Neural Models of the Retinal Response to Natural Stimuli »
Surya Ganguli -
2016 : Non-convexity in the error landscape and the expressive capacity of deep neural networks »
Surya Ganguli -
2016 Poster: Exponential expressivity in deep neural networks through transient chaos »
Ben Poole · Subhaneil Lahiri · Maithra Raghu · Jascha Sohl-Dickstein · Surya Ganguli -
2016 Poster: Deep Learning Models of the Retinal Response to Natural Scenes »
Lane McIntosh · Niru Maheswaranathan · Aran Nayebi · Surya Ganguli · Stephen Baccus -
2015 Poster: Deep Knowledge Tracing »
Chris Piech · Jonathan Bassen · Jonathan Huang · Surya Ganguli · Mehran Sahami · Leonidas Guibas · Jascha Sohl-Dickstein -
2014 Workshop: Deep Learning and Representation Learning »
Andrew Y Ng · Yoshua Bengio · Adam Coates · Roland Memisevic · Sharanyan Chetlur · Geoffrey E Hinton · Shamim Nemati · Bryan Catanzaro · Surya Ganguli · Herbert Jaeger · Phil Blunsom · Leon Bottou · Volodymyr Mnih · Chen-Yu Lee · Rich M Schwartz -
2014 Poster: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization »
Yann N Dauphin · Razvan Pascanu · Caglar Gulcehre · Kyunghyun Cho · Surya Ganguli · Yoshua Bengio -
2013 Poster: A memory frontier for complex synapses »
Subhaneil Lahiri · Surya Ganguli -
2013 Oral: A memory frontier for complex synapses »
Subhaneil Lahiri · Surya Ganguli -
2010 Poster: Short-term memory in neuronal networks through dynamical compressed sensing »
Surya Ganguli · Haim Sompolinsky