Timezone: »
The reparameterization gradient has become a widely used method to obtain Monte Carlo gradients to optimize the variational objective. However, this technique does not easily apply to commonly used distributions such as beta or gamma without further approximations, and most practical applications of the reparameterization gradient fit Gaussian distributions. In this paper, we introduce the generalized reparameterization gradient, a method that extends the reparameterization gradient to a wider class of variational distributions. Generalized reparameterizations use invertible transformations of the latent variables which lead to transformed distributions that weakly depend on the variational parameters. This results in new Monte Carlo gradients that combine reparameterization gradients and score function gradients. We demonstrate our approach on variational inference for two complex probabilistic models. The generalized reparameterization is effective: even a single sample from the variational distribution is enough to obtain a low-variance gradient.
Author Information
Francisco Ruiz (Columbia University)
Michalis Titsias (DeepMind)
David Blei (Columbia University)
David Blei is a Professor of Statistics and Computer Science at Columbia University, and a member of the Columbia Data Science Institute. His research is in statistical machine learning, involving probabilistic topic models, Bayesian nonparametric methods, and approximate posterior inference algorithms for massive data. He works on a variety of applications, including text, images, music, social networks, user behavior, and scientific data. David has received several awards for his research, including a Sloan Fellowship (2010), Office of Naval Research Young Investigator Award (2011), Presidential Early Career Award for Scientists and Engineers (2011), Blavatnik Faculty Award (2013), and ACM-Infosys Foundation Award (2013). He is a fellow of the ACM.
More from the Same Authors
-
2021 : Unveiling Mode-connectivity of the ELBO Landscape »
Edith Zhang · David Blei -
2022 : An Invariant Learning Characterization of Controlled Text Generation »
Claudia Shi · Carolina Zheng · Keyon Vafa · Amir Feder · David Blei -
2022 : A Bayesian Causal Inference Approach for Assessing Fairness in Clinical Decision-Making »
Linying Zhang · Lauren Richter · Yixin Wang · Anna Ostropolets · Noemie Elhadad · David Blei · George Hripcsak -
2022 : Adjusting the Gender Wage Gap with a Low-Dimensional Representation of Job History »
Keyon Vafa · Susan Athey · David Blei -
2022 : CAREER: Economic Prediction of Labor Sequence Data Under Distribution Shift »
Keyon Vafa · Emil Palikot · Tianyu Du · Ayush Kanodia · Susan Athey · David Blei -
2022 : An Invariant Learning Characterization of Controlled Text Generation »
Claudia Shi · Carolina Zheng · Keyon Vafa · Amir Feder · David Blei -
2022 Spotlight: Lightning Talks 1B-4 »
Andrei Atanov · Shiqi Yang · Wanshan Li · Yongchang Hao · Ziquan Liu · Jiaxin Shi · Anton Plaksin · Jiaxiang Chen · Ziqi Pan · yaxing wang · Yuxin Liu · Stepan Martyanov · Alessandro Rinaldo · Yuhao Zhou · Li Niu · Qingyuan Yang · Andrei Filatov · Yi Xu · Liqing Zhang · Lili Mou · Ruomin Huang · Teresa Yeo · kai wang · Daren Wang · Jessica Hwang · Yuanhong Xu · Qi Qian · Hu Ding · Michalis Titsias · Shangling Jui · Ajay Sohmshetty · Lester Mackey · Joost van de Weijer · Hao Li · Amir Zamir · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 Spotlight: Gradient Estimation with Discrete Stein Operators »
Jiaxin Shi · Yuhao Zhou · Jessica Hwang · Michalis Titsias · Lester Mackey -
2022 : CAREER: Economic Prediction of Labor Sequence Data Under Distribution Shift »
Keyon Vafa · Emil Palikot · Tianyu Du · Ayush Kanodia · Susan Athey · David Blei -
2022 : An Invariant Learning Characterization of Controlled Text Generation »
Claudia Shi · Carolina Zheng · Keyon Vafa · Amir Feder · David Blei -
2022 Poster: Gradient Estimation with Discrete Stein Operators »
Jiaxin Shi · Yuhao Zhou · Jessica Hwang · Michalis Titsias · Lester Mackey -
2021 : David Blei - On the Assumptions of Synthetic Control Methods »
David Blei -
2021 Test Of Time: Online Learning for Latent Dirichlet Allocation »
Matthew Hoffman · Francis Bach · David Blei -
2021 Poster: Entropy-based adaptive Hamiltonian Monte Carlo »
Marcel Hirt · Michalis Titsias · Petros Dellaportas -
2021 Poster: Posterior Collapse and Latent Variable Non-identifiability »
Yixin Wang · David Blei · John Cunningham -
2020 Workshop: I Can’t Believe It’s Not Better! Bridging the gap between theory and empiricism in probabilistic machine learning »
Jessica Forde · Francisco Ruiz · Melanie Fernandez Pradier · Aaron Schein · Finale Doshi-Velez · Isabel Valera · David Blei · Hanna Wallach -
2020 Poster: Markovian Score Climbing: Variational Inference with KL(p||q) »
Christian Naesseth · Fredrik Lindsten · David Blei -
2019 Poster: Poisson-Randomized Gamma Dynamical Systems »
Aaron Schein · Scott Linderman · Mingyuan Zhou · David Blei · Hanna Wallach -
2019 Poster: Variational Bayes under Model Misspecification »
Yixin Wang · David Blei -
2019 Poster: Using Embeddings to Correct for Unobserved Confounding in Networks »
Victor Veitch · Yixin Wang · David Blei -
2019 Poster: Adapting Neural Networks for the Estimation of Treatment Effects »
Claudia Shi · David Blei · Victor Veitch -
2018 : Datasets and Benchmarks for Causal Learning »
Csaba Szepesvari · Isabelle Guyon · Nicolai Meinshausen · David Blei · Elias Bareinboim · Bernhard Schölkopf · Pietro Perona -
2018 : The Blessings of Multiple Causes »
David Blei -
2017 : Panel: On the Foundations and Future of Approximate Inference »
David Blei · Zoubin Ghahramani · Katherine Heller · Tim Salimans · Max Welling · Matthew D. Hoffman -
2017 : Introduction »
Cheng Zhang · Francisco Ruiz · Dustin Tran · James McInerney · Stephan Mandt -
2017 Workshop: Advances in Approximate Bayesian Inference »
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias -
2017 Poster: Hierarchical Implicit Models and Likelihood-Free Variational Inference »
Dustin Tran · Rajesh Ranganath · David Blei -
2017 Poster: Structured Embedding Models for Grouped Data »
Maja Rudolph · Francisco Ruiz · Susan Athey · David Blei -
2017 Poster: Variational Inference via $\chi$ Upper Bound Minimization »
Adji Bousso Dieng · Dustin Tran · Rajesh Ranganath · John Paisley · David Blei -
2017 Poster: Context Selection for Embedding Models »
Liping Liu · Francisco Ruiz · Susan Athey · David Blei -
2016 : Causal Inference for Recommendation Systems »
David Blei -
2016 : Panel Discussion »
Shakir Mohamed · David Blei · Ryan Adams · José Miguel Hernández-Lobato · Ian Goodfellow · Yarin Gal -
2016 : Deep exponential families »
David Blei -
2016 Workshop: Advances in Approximate Bayesian Inference »
Tamara Broderick · Stephan Mandt · James McInerney · Dustin Tran · David Blei · Kevin Murphy · Andrew Gelman · Michael I Jordan -
2016 Poster: Operator Variational Inference »
Rajesh Ranganath · Dustin Tran · Jaan Altosaar · David Blei -
2016 Poster: One-vs-Each Approximation to Softmax for Scalable Estimation of Probabilities »
Michalis Titsias -
2016 Poster: Exponential Family Embeddings »
Maja Rudolph · Francisco Ruiz · Stephan Mandt · David Blei -
2016 Tutorial: Variational Inference: Foundations and Modern Methods »
David Blei · Shakir Mohamed · Rajesh Ranganath -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Poster: The Population Posterior and Bayesian Modeling on Streams »
James McInerney · Rajesh Ranganath · David Blei -
2015 Poster: Automatic Variational Inference in Stan »
Alp Kucukelbir · Rajesh Ranganath · Andrew Gelman · David Blei -
2015 Spotlight: Automatic Variational Inference in Stan »
Alp Kucukelbir · Rajesh Ranganath · Andrew Gelman · David Blei -
2015 Poster: Infinite Factorial Dynamical Model »
Isabel Valera · Francisco Ruiz · Lennart Svensson · Fernando Perez-Cruz -
2015 Poster: Local Expectation Gradients for Black Box Variational Inference »
Michalis Titsias · Miguel Lázaro-Gredilla -
2015 Poster: Copula variational inference »
Dustin Tran · David Blei · Edo M Airoldi -
2014 Poster: Hamming Ball Auxiliary Sampling for Factorial Hidden Markov Models »
Michalis Titsias · Christopher Yau -
2014 Spotlight: Hamming Ball Auxiliary Sampling for Factorial Hidden Markov Models »
Michalis Titsias · Christopher Yau -
2013 Poster: Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression »
Michalis Titsias · Miguel Lazaro-Gredilla -
2012 Poster: Bayesian Nonparametric Modeling of Suicide Attempts »
Francisco Ruiz · Isabel Valera · Carlos Blanco · Fernando Perez-Cruz -
2012 Spotlight: Bayesian Nonparametric Modeling of Suicide Attempts »
Francisco Ruiz · Isabel Valera · Carlos Blanco · Fernando Perez-Cruz