Timezone: »
The optimization problem behind neural networks is highly non-convex. Training with stochastic gradient descent and variants requires careful parameter tuning and provides no guarantee to achieve the global optimum. In contrast we show under quite weak assumptions on the data that a particular class of feedforward neural networks can be trained globally optimal with a linear convergence rate. Up to our knowledge this is the first practically feasible method which achieves such a guarantee. While the method can in principle be applied to deep networks, we restrict ourselves for simplicity in this paper to one- and two hidden layer networks. Our experiments confirms that these models are already rich enough to achieve good performance on a series of real-world datasets.
Author Information
Antoine Gautier (Saarland University)
Quynh Nguyen (Saarland University)
Matthias Hein (Saarland University)
More from the Same Authors
-
2021 : RobustBench: a standardized adversarial robustness benchmark »
Francesco Croce · Maksym Andriushchenko · Vikash Sehwag · Edoardo Debenedetti · Nicolas Flammarion · Mung Chiang · Prateek Mittal · Matthias Hein -
2021 Spotlight: An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence »
Agustinus Kristiadi · Matthias Hein · Philipp Hennig -
2021 : Being a Bit Frequentist Improves Bayesian Neural Networks »
Agustinus Kristiadi · Matthias Hein · Philipp Hennig -
2021 Poster: When Are Solutions Connected in Deep Networks? »
Quynh Nguyen · Pierre Bréchet · Marco Mondelli -
2021 Poster: An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence »
Agustinus Kristiadi · Matthias Hein · Philipp Hennig -
2021 Poster: Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks »
Maksym Yatsura · Jan Metzen · Matthias Hein -
2020 Poster: Global Convergence of Deep Networks with One Wide Layer Followed by Pyramidal Topology »
Quynh Nguyen · Marco Mondelli -
2017 : Poster Spotlights I »
Taesik Na · Yang Song · Aman Sinha · Richard Shin · Qiuyuan Huang · Nina Narodytska · Matt Staib · Kexin Pei · Fnu Suya · Amirata Ghorbani · Jacob Buckman · Matthias Hein · Huan Zhang · Yanjun Qi · Yuan Tian · Min Du · Dimitris Tsipras -
2017 Poster: Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation »
Matthias Hein · Maksym Andriushchenko -
2016 Poster: Clustering Signed Networks with the Geometric Mean of Laplacians »
Pedro Mercado · Francesco Tudisco · Matthias Hein -
2015 Poster: Efficient Output Kernel Learning for Multiple Tasks »
Pratik Kumar Jawanpuria · Maksim Lapin · Matthias Hein · Bernt Schiele -
2015 Poster: Top-k Multiclass SVM »
Maksim Lapin · Matthias Hein · Bernt Schiele -
2015 Spotlight: Top-k Multiclass SVM »
Maksim Lapin · Matthias Hein · Bernt Schiele -
2015 Poster: Regularization-Free Estimation in Trace Regression with Symmetric Positive Semidefinite Matrices »
Martin Slawski · Ping Li · Matthias Hein -
2014 Poster: Tight Continuous Relaxation of the Balanced k-Cut Problem »
Syama Sundar Rangapuram · Pramod Kaushik Mudrakarta · Matthias Hein -
2013 Poster: The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited »
Matthias Hein · Simon Setzer · Leonardo Jost · Syama Sundar Rangapuram -
2013 Spotlight: The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited »
Matthias Hein · Simon Setzer · Leonardo Jost · Syama Sundar Rangapuram -
2013 Poster: Matrix factorization with binary components »
Martin Slawski · Matthias Hein · Pavlo Lutsik -
2013 Spotlight: Matrix factorization with binary components »
Martin Slawski · Matthias Hein · Pavlo Lutsik -
2011 Poster: Sparse recovery by thresholded non-negative least squares »
Martin Slawski · Matthias Hein -
2011 Poster: Beyond Spectral Clustering - Tight Relaxations of Balanced Graph Cuts »
Matthias Hein · Simon Setzer -
2010 Poster: An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA »
Matthias Hein · Thomas Bühler -
2010 Spotlight: Getting lost in space: Large sample analysis of the resistance distance »
Ulrike von Luxburg · Agnes Radl · Matthias Hein -
2010 Poster: Getting lost in space: Large sample analysis of the resistance distance »
Ulrike von Luxburg · Agnes Radl · Matthias Hein -
2009 Poster: Semi-supervised Regression using Hessian energy with an application to semi-supervised dimensionality reduction »
Kwang In Kim · Florian Steinke · Matthias Hein -
2009 Poster: Robust Nonparametric Regression with Metric-Space Valued Output »
Matthias Hein -
2008 Poster: Non-parametric Regression Between Manifolds »
Florian Steinke · Matthias Hein -
2008 Poster: Influence of graph construction on graph-based clustering measures »
Markus M Maier · Ulrike von Luxburg · Matthias Hein -
2008 Oral: Influence of graph construction on graph-based clustering measures »
Markus M Maier · Ulrike von Luxburg · Matthias Hein -
2006 Poster: Manifold Denoising »
Matthias Hein · Markus M Maier -
2006 Talk: Manifold Denoising »
Matthias Hein · Markus M Maier