Timezone: »
Poster
GAP Safe Screening Rules for Sparse-Group Lasso
Eugene Ndiaye · Olivier Fercoq · Alexandre Gramfort · Joseph Salmon
For statistical learning in high dimension, sparse regularizations have proven useful to boost both computational and statistical efficiency. In some contexts, it is natural to handle more refined structures than pure sparsity, such as for instance group sparsity. Sparse-Group Lasso has recently been introduced in the context of linear regression to enforce sparsity both at the feature and at the group level. We propose the first (provably) safe screening rules for Sparse-Group Lasso, i.e., rules that allow to discard early in the solver features/groups that are inactive at optimal solution. Thanks to efficient dual gap computations relying on the geometric properties of $\epsilon$-norm, safe screening rules for Sparse-Group Lasso lead to significant gains in term of computing time for our coordinate descent implementation.
Author Information
Eugene Ndiaye (Télécom ParisTech)
Olivier Fercoq (Telecom ParisTech)
Alexandre Gramfort (Meta)
Joseph Salmon (Télécom ParisTech)
More from the Same Authors
-
2021 : Pl@ntNet-300K: a plant image dataset with high label ambiguity and a long-tailed distribution »
Camille Garcin · alexis joly · Pierre Bonnet · Antoine Affouard · Jean-Christophe Lombardo · Mathias Chouet · Maximilien Servajean · Titouan Lorieul · Joseph Salmon -
2020 Poster: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Spotlight: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Poster: Statistical control for spatio-temporal MEG/EEG source imaging with desparsified mutli-task Lasso »
Jerome-Alexis Chevalier · Joseph Salmon · Alexandre Gramfort · Bertrand Thirion -
2019 Poster: Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso »
Quentin Bertrand · Mathurin Massias · Alexandre Gramfort · Joseph Salmon -
2019 Poster: Learning step sizes for unfolded sparse coding »
Pierre Ablin · Thomas Moreau · Mathurin Massias · Alexandre Gramfort -
2019 Poster: Stochastic Frank-Wolfe for Composite Convex Minimization »
Francesco Locatello · Alp Yurtsever · Olivier Fercoq · Volkan Cevher -
2019 Poster: Manifold-regression to predict from MEG/EEG brain signals without source modeling »
David Sabbagh · Pierre Ablin · Gael Varoquaux · Alexandre Gramfort · Denis A. Engemann -
2018 Poster: Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals »
Tom Dupré la Tour · Thomas Moreau · Mainak Jas · Alexandre Gramfort -
2017 Poster: Smooth Primal-Dual Coordinate Descent Algorithms for Nonsmooth Convex Optimization »
Ahmet Alacaoglu · Quoc Tran Dinh · Olivier Fercoq · Volkan Cevher -
2016 Poster: Joint quantile regression in vector-valued RKHSs »
Maxime Sangnier · Olivier Fercoq · Florence d'Alché-Buc -
2015 Poster: Extending Gossip Algorithms to Distributed Estimation of U-statistics »
Igor Colin · Aurélien Bellet · Joseph Salmon · Stéphan Clémençon -
2015 Spotlight: Extending Gossip Algorithms to Distributed Estimation of U-statistics »
Igor Colin · Aurélien Bellet · Joseph Salmon · Stéphan Clémençon -
2015 Poster: GAP Safe screening rules for sparse multi-task and multi-class models »
Eugene Ndiaye · Olivier Fercoq · Alexandre Gramfort · Joseph Salmon -
2014 Poster: Probabilistic low-rank matrix completion on finite alphabets »
Jean Lafond · Olga Klopp · Eric Moulines · Joseph Salmon