Timezone: »
Poster
Data driven estimation of Laplace-Beltrami operator
Frederic Chazal · Ilaria Giulini · Bertrand Michel
Approximations of Laplace-Beltrami operators on manifolds through graph Laplacians have become popular tools in data analysis and machine learning. These discretized operators usually depend on bandwidth parameters whose tuning remains a theoretical and practical problem. In this paper, we address this problem for the unormalized graph Laplacian by establishing an oracle inequality that opens the door to a well-founded data-driven procedure for the bandwidth selection. Our approach relies on recent results by Lacour and Massart (2015) on the so-called Lepski's method.
Author Information
Frederic Chazal (INRIA)
Ilaria Giulini (INRIA and Paris Diderot)
Bertrand Michel (UPMC)
More from the Same Authors
-
2020 : Closing Remarks »
Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Bastian Rieck · Yuhei Umeda · Guy Wolf -
2020 Workshop: Topological Data Analysis and Beyond »
Bastian Rieck · Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Yuhei Umeda · Guy Wolf -
2020 : Opening Remarks »
Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Bastian Rieck · Yuhei Umeda · Guy Wolf -
2020 Poster: PLLay: Efficient Topological Layer based on Persistent Landscapes »
Kwangho Kim · Jisu Kim · Manzil Zaheer · Joon Kim · Frederic Chazal · Larry Wasserman -
2017 : Discussion: Geometric Data Analysis »
Frederic Chazal · Marina Meila -
2017 Workshop: Synergies in Geometric Data Analysis (TWO DAYS) »
Marina Meila · Frederic Chazal · Yu-Chia Chen -
2007 Workshop: Topology Learning: New Challenges At the Crossing of Machine Learning, »
Michael Aupetit · Frederic Chazal · Gilles Gasso · David Cohen-Steiner · pierre gaillard