Timezone: »
We consider the problem of optimization from samples of monotone submodular functions with bounded curvature. In numerous applications, the function optimized is not known a priori, but instead learned from data. What are the guarantees we have when optimizing functions from sampled data? In this paper we show that for any monotone submodular function with curvature c there is a (1 - c)/(1 + c - c^2) approximation algorithm for maximization under cardinality constraints when polynomially-many samples are drawn from the uniform distribution over feasible sets. Moreover, we show that this algorithm is optimal. That is, for any c < 1, there exists a submodular function with curvature c for which no algorithm can achieve a better approximation. The curvature assumption is crucial as for general monotone submodular functions no algorithm can obtain a constant-factor approximation for maximization under a cardinality constraint when observing polynomially-many samples drawn from any distribution over feasible sets, even when the function is statistically learnable.
Author Information
Eric Balkanski (Harvard University)
Aviad Rubinstein (UC Berkeley)
Yaron Singer (Harvard University)
More from the Same Authors
-
2020 Poster: The Adaptive Complexity of Maximizing a Gross Substitutes Valuation »
Ron Kupfer · Sharon Qian · Eric Balkanski · Yaron Singer -
2020 Poster: An Optimal Elimination Algorithm for Learning a Best Arm »
Avinatan Hassidim · Ron Kupfer · Yaron Singer -
2020 Spotlight: An Optimal Elimination Algorithm for Learning a Best Arm »
Avinatan Hassidim · Ron Kupfer · Yaron Singer -
2020 Spotlight: The Adaptive Complexity of Maximizing a Gross Substitutes Valuation »
Ron Kupfer · Sharon Qian · Eric Balkanski · Yaron Singer -
2020 Poster: Investigating Gender Bias in Language Models Using Causal Mediation Analysis »
Jesse Vig · Sebastian Gehrmann · Yonatan Belinkov · Sharon Qian · Daniel Nevo · Yaron Singer · Stuart Shieber -
2020 Spotlight: Investigating Gender Bias in Language Models Using Causal Mediation Analysis »
Jesse Vig · Sebastian Gehrmann · Yonatan Belinkov · Sharon Qian · Daniel Nevo · Yaron Singer · Stuart Shieber -
2019 Poster: Secretary Ranking with Minimal Inversions »
Sepehr Assadi · Eric Balkanski · Renato Leme -
2019 Poster: Fast Parallel Algorithms for Statistical Subset Selection Problems »
Sharon Qian · Yaron Singer -
2018 Poster: Optimization for Approximate Submodularity »
Yaron Singer · Avinatan Hassidim -
2018 Poster: Non-monotone Submodular Maximization in Exponentially Fewer Iterations »
Eric Balkanski · Adam Breuer · Yaron Singer -
2017 Workshop: Discrete Structures in Machine Learning »
Yaron Singer · Jeff A Bilmes · Andreas Krause · Stefanie Jegelka · Amin Karbasi -
2017 Poster: Minimizing a Submodular Function from Samples »
Eric Balkanski · Yaron Singer -
2017 Poster: Robust Optimization for Non-Convex Objectives »
Robert S Chen · Brendan Lucier · Yaron Singer · Vasilis Syrgkanis -
2017 Poster: Statistical Cost Sharing »
Eric Balkanski · Umar Syed · Sergei Vassilvitskii -
2017 Oral: Robust Optimization for Non-Convex Objectives »
Robert S Chen · Brendan Lucier · Yaron Singer · Vasilis Syrgkanis -
2017 Poster: The Importance of Communities for Learning to Influence »
Eric Balkanski · Nicole Immorlica · Yaron Singer -
2016 Poster: Maximization of Approximately Submodular Functions »
Thibaut Horel · Yaron Singer -
2015 Poster: Learnability of Influence in Networks »
Harikrishna Narasimhan · David Parkes · Yaron Singer -
2015 Poster: Information-theoretic lower bounds for convex optimization with erroneous oracles »
Yaron Singer · Jan Vondrak -
2015 Spotlight: Information-theoretic lower bounds for convex optimization with erroneous oracles »
Yaron Singer · Jan Vondrak -
2014 Workshop: Discrete Optimization in Machine Learning »
Jeffrey A Bilmes · Andreas Krause · Stefanie Jegelka · S Thomas McCormick · Sebastian Nowozin · Yaron Singer · Dhruv Batra · Volkan Cevher