Timezone: »
Reconstruction of neuroanatomy is a fundamental problem in neuroscience. Stochastic expression of colors in individual cells is a promising tool, although its use in the nervous system has been limited due to various sources of variability in expression. Moreover, the intermingled anatomy of neuronal trees is challenging for existing segmentation algorithms. Here, we propose a method to automate the segmentation of neurons in such (potentially pseudo-colored) images. The method uses spatio-color relations between the voxels, generates supervoxels to reduce the problem size by four orders of magnitude before the final segmentation, and is parallelizable over the supervoxels. To quantify performance and gain insight, we generate simulated images, where the noise level and characteristics, the density of expression, and the number of fluorophore types are variable. We also present segmentations of real Brainbow images of the mouse hippocampus, which reveal many of the dendritic segments.
Author Information
Uygar Sümbül (Columbia University)
Douglas Roossien (University of Michigan)
Dawen Cai (University of Michigan)
Fei Chen (Massachusetts Institute of Technology)
Nicholas Barry (Massachusetts Institute of Technology)
John Cunningham (Columbia University)
Edward Boyden (Massachusetts Institute of Technology)
Liam Paninski (Columbia University)
More from the Same Authors
-
2022 : The Best Deep Ensembles Sacrifice Predictive Diversity »
Taiga Abe · Estefany Kelly Buchanan · Geoff Pleiss · John Cunningham -
2022 : Denoising Deep Generative Models »
Gabriel Loaiza-Ganem · Brendan Ross · Luhuan Wu · John Cunningham · Jesse Cresswell · Anthony Caterini -
2023 Poster: Bypassing spike sorting: density-based decoding using spike localization from dense multielectrode probes »
Yizi Zhang · Tianxiao He · Julien Boussard · Charles Windolf · Olivier Winter · Eric Trautmann · Noam Roth · Hailey Barrell · Mark Churchland · Nicholas A Steinmetz · Erdem Varol · Cole Hurwitz · Liam Paninski -
2023 Poster: Towards robust and generalizable representations of extracellular data using contrastive learning »
Ankit Vishnubhotla · Charlotte Loh · Akash Srivastava · Liam Paninski · Cole Hurwitz -
2023 Poster: Twisting Towards Perfection: Asymptotically Exact Conditional Sampling in Diffusion Models »
Luhuan Wu · Brian Trippe · Christian Naesseth · John Cunningham · David Blei -
2023 Poster: Bayesian target optimisation for high-precision holographic optogenetics »
Marcus Triplett · Marta Gajowa · Hillel Adesnik · Liam Paninski -
2022 Poster: Data Augmentation for Compositional Data: Advancing Predictive Models of the Microbiome »
Elliott Gordon-Rodriguez · Thomas Quinn · John Cunningham -
2022 Poster: Posterior and Computational Uncertainty in Gaussian Processes »
Jonathan Wenger · Geoff Pleiss · Marvin Pförtner · Philipp Hennig · John Cunningham -
2022 Poster: Deep Ensembles Work, But Are They Necessary? »
Taiga Abe · Estefany Kelly Buchanan · Geoff Pleiss · Richard Zemel · John Cunningham -
2021 Workshop: Learning Meaningful Representations of Life (LMRL) »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Anshul Kundaje · Barbara Engelhardt · Chang Liu · David Van Valen · Debora Marks · Edward Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang -
2021 Poster: Three-dimensional spike localization and improved motion correction for Neuropixels recordings »
Julien Boussard · Erdem Varol · Hyun Dong Lee · Nishchal Dethe · Liam Paninski -
2021 Poster: The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective »
Geoff Pleiss · John Cunningham -
2021 Poster: Posterior Collapse and Latent Variable Non-identifiability »
Yixin Wang · David Blei · John Cunningham -
2021 Poster: Rectangular Flows for Manifold Learning »
Anthony Caterini · Gabriel Loaiza-Ganem · Geoff Pleiss · John Cunningham -
2020 Workshop: Learning Meaningful Representations of Life (LMRL.org) »
Elizabeth Wood · Debora Marks · Ray Jones · Adji Bousso Dieng · Alan Aspuru-Guzik · Anshul Kundaje · Barbara Engelhardt · Chang Liu · Edward Boyden · Kresten Lindorff-Larsen · Mor Nitzan · Smita Krishnaswamy · Wouter Boomsma · Yixin Wang · David Van Valen · Orr Ashenberg -
2020 Poster: Deep Graph Pose: a semi-supervised deep graphical model for improved animal pose tracking »
Anqi Wu · Estefany Kelly Buchanan · Matthew Whiteway · Michael Schartner · Guido Meijer · Jean-Paul Noel · Erica Rodriguez · Claire Everett · Amy Norovich · Evan Schaffer · Neeli Mishra · C. Daniel Salzman · Dora Angelaki · Andrés Bendesky · The International Brain Laboratory The International Brain Laboratory · John Cunningham · Liam Paninski -
2020 Poster: Recurrent Switching Dynamical Systems Models for Multiple Interacting Neural Populations »
Joshua Glaser · Matthew Whiteway · John Cunningham · Liam Paninski · Scott Linderman -
2020 Poster: Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax »
Andres Potapczynski · Gabriel Loaiza-Ganem · John Cunningham -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 Poster: Paraphrase Generation with Latent Bag of Words »
Yao Fu · Yansong Feng · John Cunningham -
2019 Poster: BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos »
Eleanor Batty · Matthew Whiteway · Shreya Saxena · Dan Biderman · Taiga Abe · Simon Musall · Winthrop Gillis · Jeffrey Markowitz · Anne Churchland · John Cunningham · Sandeep R Datta · Scott Linderman · Liam Paninski -
2019 Poster: Deep Random Splines for Point Process Intensity Estimation of Neural Population Data »
Gabriel Loaiza-Ganem · Sean Perkins · Karen Schroeder · Mark Churchland · John Cunningham -
2019 Poster: Scalable Bayesian inference of dendritic voltage via spatiotemporal recurrent state space models »
Ruoxi Sun · Ian Kinsella · Scott Linderman · Liam Paninski -
2019 Poster: The continuous Bernoulli: fixing a pervasive error in variational autoencoders »
Gabriel Loaiza-Ganem · John Cunningham -
2019 Poster: Efficient characterization of electrically evoked responses for neural interfaces »
Nishal Shah · Sasidhar Madugula · Pawel Hottowy · Alexander Sher · Alan Litke · Liam Paninski · E.J. Chichilnisky -
2019 Oral: Scalable Bayesian inference of dendritic voltage via spatiotemporal recurrent state space models »
Ruoxi Sun · Ian Kinsella · Scott Linderman · Liam Paninski -
2017 : Poster Session 1 »
Magdalena Fuchs · David Lung · Mathias Lechner · Kezhi Li · Andrew Gordus · Vivek Venkatachalam · Shivesh Chaudhary · Jan Hůla · David Rolnick · Scott Linderman · Gonzalo Mena · Liam Paninski · Netta Cohen -
2017 Spotlight: Deep Networks for Decoding Natural Images from Retinal Signals »
Nikhil Parthasarathy · Eleanor Batty · William Falcon · Thomas Rutten · Mohit Rajpal · E.J. Chichilnisky · Liam Paninski -
2017 Poster: Neural Networks for Efficient Bayesian Decoding of Natural Images from Retinal Neurons »
Nikhil Parthasarathy · Eleanor Batty · William Falcon · Thomas Rutten · Mohit Rajpal · E.J. Chichilnisky · Liam Paninski -
2017 Poster: OnACID: Online Analysis of Calcium Imaging Data in Real Time »
Andrea Giovannucci · Johannes Friedrich · Matt Kaufman · Anne Churchland · Dmitri Chklovskii · Liam Paninski · Eftychios Pnevmatikakis -
2017 Poster: YASS: Yet Another Spike Sorter »
Jin Hyung Lee · David Carlson · Hooshmand Shokri Razaghi · Weichi Yao · Georges A Goetz · Espen Hagen · Eleanor Batty · E.J. Chichilnisky · Gaute T. Einevoll · Liam Paninski -
2016 Poster: Linear dynamical neural population models through nonlinear embeddings »
Yuanjun Gao · Evan Archer · Liam Paninski · John Cunningham -
2016 Poster: Fast Active Set Methods for Online Spike Inference from Calcium Imaging »
Johannes Friedrich · Liam Paninski -
2015 Poster: Bayesian Active Model Selection with an Application to Automated Audiometry »
Jacob Gardner · Gustavo Malkomes · Roman Garnett · Kilian Weinberger · Dennis Barbour · John Cunningham -
2015 Poster: High-dimensional neural spike train analysis with generalized count linear dynamical systems »
Yuanjun Gao · Lars Busing · Krishna V Shenoy · John Cunningham -
2015 Spotlight: High-dimensional neural spike train analysis with generalized count linear dynamical systems »
Yuanjun Gao · Lars Busing · Krishna V Shenoy · John Cunningham -
2014 Poster: Clustered factor analysis of multineuronal spike data »
Lars Buesing · Timothy A Machado · John P Cunningham · Liam Paninski -
2014 Spotlight: Clustered factor analysis of multineuronal spike data »
Lars Buesing · Timothy A Machado · John P Cunningham · Liam Paninski -
2013 Poster: A multi-agent control framework for co-adaptation in brain-computer interfaces »
Josh S Merel · Roy Fox · Tony Jebara · Liam Paninski -
2013 Poster: Bayesian Inference and Online Experimental Design for Mapping Neural Microcircuits »
Ben Shababo · Brooks Paige · Ari Pakman · Liam Paninski -
2013 Spotlight: Bayesian Inference and Online Experimental Design for Mapping Neural Microcircuits »
Ben Shababo · Brooks Paige · Ari Pakman · Liam Paninski -
2013 Poster: Auxiliary-variable Exact Hamiltonian Monte Carlo Samplers for Binary Distributions »
Ari Pakman · Liam Paninski -
2013 Poster: Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions »
Eftychios Pnevmatikakis · Liam Paninski -
2013 Poster: Robust learning of low-dimensional dynamics from large neural ensembles »
David Pfau · Eftychios Pnevmatikakis · Liam Paninski -
2011 Poster: Information Rates and Optimal Decoding in Large Neural Populations »
Kamiar Rahnama Rad · Liam Paninski -
2011 Spotlight: Information Rates and Optimal Decoding in Large Neural Populations »
Kamiar Rahnama Rad · Liam Paninski